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1. SUMMARY

The stability of arches has been studied abundamtiije past and many analytical solutions for high
and shallow arches have been developed. Numebaians for in-plane and out-of-plane stability
under different loadings have also been publiskieavever, in these studies the arches are assumed to
be stress-free in their initial, unloaded conditidhe case of prestressed arches has not beersseldire
so far. In this paper the influence of prestressmghe in-plane stability of arches is investighte
Prestressing may be unintentional, due to thedaban process of the arch, or intentional, ifribyes

to be beneficial for the arch’s structural behavildte simpler case of elastic prestressing is adek
here, while the more complex case of elasto-plassiual stresses due to the fabrication procdks w
be the objective of future studies. Variational noels are used to obtain analytical solutions fer th
buckling loads of simply-supported, uniformly pressed circular arches under uniform radial
pressure. The solutions can be easily extendeth&y oases of loads and boundary conditions.

Keywords: Arches, stability, prestress, cold rahHding, elastic buckling.
2. STATE OF ART ON IN-PLANE STABILITY OF ARCHES

When subjected to compressive forces, circularearetith restrained lateral displacements may buckle
in their plane in an asymmetrical mode, or in a syatrical mode, which is then called snap-through.
From the viewpoint of buckling analysis, it is udefo distinguish two basic types of arches: high
arches and shallow arches. For high arches, th&ecdne of the arch may be considered as
incompressible, whereas for flat arches, its shamtgis important [1]. What is often referred tothe
classical theory of buckling, is actually basedr@xtensibility of the arch and provides thus atiey
solutions for high arches. In this approach, trested buckling load is determined by introducing
second order effects of the compressive stredseirdquilibrium equation of the bending moment, like
in elementary theory of column buckling (see foample [2]).
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For shallow arches, some authors propose to useisogdal curve approximation of the circular arch
and a development of the external load in Fourgeres [1,3]. This solution has provided interesting
results, especially for imperfection sensitivity. significant improvement in the study of shallow
arches was Schreyer’'s and Masur’'s exact solutiahehonlinear equilibrium equations subjected to
either uniform pressure or concentrated centrad [gd. This solution, based on the energy method,
was adopted by many authors, among them the grbilipabair and Bradford from the University of
New South Wales in Sidney [5]. Their research aatnanderstanding the influence of the non-linear
pre-buckling deformation on the buckling load otles and it confirmed that they can be only
neglected for high arches. They applied their mettm a wide variety of problems, from elastic
stability of steel sections [6] to creep buckling amncrete arches [7] and also flexural torsional
buckling of arches under compression [8] or ben{@ig

Few authors have been concerned by the influengeresdtress on the stability of circular arches.
Clifton used the analytical solution of Schreyed aWasur, in which he introduced an initial normal
prestress and quantified its influence on buckloagls and buckling modes [10]. Except of this paper
most research on the subject of prestressed afobesed on thelasticg which is actually the post-
buckled curve of a straight beam. Thompson and ldeutloped an energy model based on Taylor’s
series, applied it to a trigonometric first ord@peoximation of theelasticaand confirmed Clifton’s
results. They found that the buckling load wasdnhedependant on the average axial prestress, and
that the higher the initial compression, the smahe critical buckling load [3].

A lot of numerical work (and also experimental wark a centrifuge [11]) was also done in the
University of Maryland, where Mirmiran, Amde and We-Tinsae developed an innovative concept of
dome made of prestressed sandwich arches [12]. Staelyed first the simplelasticaand found that
“residual compressive stresses that result whenptlstressed arch framework is formed have a
negative effect on the stability of its member” J[1Bhen, improving their concept by transforming it
into a sandwich framework, they concluded thahd tprestressing is applied separately to the fayer
of the sandwich section, unlike single elasticéhasg the resulting arch will be as stable as gfisl ror
non-prestressed counterpart” [12]. This surprisgsgult is actually linked with the fact that aftguing
together the different layers in the sandwich,itiegtia of the arch is dramatically increased, st the
sum of the prestress in the layers is negligibleomparison to the buckling load of the arch.

Hence, the stability of circular arches has beeuandantly studied in the past, analytically and
numerically. In most studies, the arches are asgdutoebe stress-free in their initial, unloaded
condition. Indeed, with the exception of the vepgafic case oélasticg the case of prestressed arches
has not been studied so far. This paper will thuslysthe influence of uniform prestress and be
presented as follows. The next section describeetiergy method used for the analytical calculation
of buckling load for high arches without prestreSsction 4 is then concerned with the introduction

the model of uniform prestress in the arch. A bdistussion concludes the paper and emphasizes the
future development of the model for the designteélsarches taking into account the residual stsess
induced by the forming process.

3. FIRST ORDER MODEL FOR ELASTIC BUCKLING OF CIRCULAR ARCHES

For simplicity, the article focuses on circular legs subjected to uniform radial pressure (figure 1)
Other loading cases such as concentrated forceertical uniform load will be discussed in future
work; it has been established, however, that tleegat really influence the main results of thischet
Pinned boundary conditions have been chosen betlagigeare most commonly used in practice. We
shall also show in a future paper that this choiees not qualitatively alter our main results. Bor
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determination of the local equation of the behawod of the buckling load of the arch, calculations
will be based on an energy approach. It will beuas=d that the beam is sufficiently slender so that
Euler-Bernoulli model describes with good accurteystrains during the whole transformation, which
is considered as perfectly elastic and as induaitlg small displacements and small rotations.

q

N N L NS

(a) Anti-symmetric bifurcation buckling (b) Symmetric snap-through buckling
Figure 1: Buckling modes of circular arches undeifarm radial pressure.

3.1 Principle of the variational method
In the arch of figure R is the radius and the characteristic angle defining a point locaiedhe arch.

Maximum values forf are ta. u andv are the tangential and radial displacements, otspéy,
positive when directed toward the center of theleir

Initial shape
Deformed shape \

Figure 2: Local axes of the arch.

According to our hypothesis, the axial straiand curvature in the beam are given by:

U v 1(u v\ 1(u VvV
SRR T SR YT &
R R 2\ R RUR R

It must be noted here that this non-linear expoessiightly differs from that of Pi and Bradford] [5
who are mainly concerned with the behavior of slvalarches. Indeed, with small valuesaof<z/4 or
<z/3 depending of the inertia properties of the segtione can show with a standard elastic structural
analysis that the ratifu/v'| is very small so thati can be neglected in the term in brackets in the
expression of axial strain. This assumption all®vand Bradford to take initial strain into accofmt

the determination of critical loads [5]. We, herdgend only to calculate the elastic buckling lagith

first order analysis and therefore can keep a mgeneral expression fer
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For conciseness of expressions, we introduce nowasional displacements and v, which denote

the ratiosu/Randv/R, respectively. Expressions in (1) are now writsrfollowing:
u+Vv

=R 2

The strain energ\\**' associated with these deformations can be caémlifadm the Young’s modulus

E, the section are@and the inertia of the beam, while the potential eneiy§ of the external forces

can also be evaluated from the radial pressurelghenradial displacements:

g=U’—\7+%(U+V)2,

Wl = j Elx?Rd) += j E$2 RA, W™ = j pRV® (3)
At equilibrium, the total energ\ji\/‘Ot V\f”“+ W is minimum. Therefore, for any small displacements
ou andov around the equilibrium solution, the variatiortloé total energy must be equal to zero:
Vou andvev SWe +6 W'=0 (4)
In the above equation, one has to expand the diffetlerms and to explicit its dependencyda
andsv . From equations (3) the variation of energy oeexal forces and strain energy are:

SW = — j pRSVA, SW™ = j Elxdx R + j E$se Rd (5)
In this expressionje anddx denote the variation of axial strain and curvatexaluated from (2):
£ = 8T - 5V +(T+V) (5T 57V), 5K=@ (6)

Introducing (6) into (5), integrating by parts actounting for the boundary conditions, one obtains

[ (-Elx'~ESe'+ ESR("u-"Y) & uRBH+ j( Bl - ES EGH +0))w 293— RO (7)
This expression must be equal to zero for any dcgrhentsst and 6V, so that both terms in brackets
in the integral must be zero:

~Elx'~ES¢'+ ESR("wY=0, Elx"-ESe— ESKe(u-y) - pR=0 ®)
These are the two equations of local equilibrium simplify them we introduce two new notations, the
slenderness of the aréki/R, where i is the inertia radius of the crosst®m, and a nondimensional
expression of the loadp = pR®/ El. By differentiating the first of equations (8) aadding it to the
second, we get the final equations for non-lineaal equilibrium of an arch under uniform pressure:
g"+e=-Ap, -ARK'—¢'+&(U+V)=0 (9)

3.2 Evaluation of buckling load

The non-linearity introduced by the last term ia #econd of equations (9) does not allow us todimd
exact analytical solution. Nevertheless, the stoidthe linear problem associated with these eqoatio
Is straightforward and leads to:

g =—/1T{1— sina cosﬁJ K" =Q28ina(0081— cof) (10)
D(a) R

whereD(a) is a trigonometric function ot inferior to a. We remark that wheh is small (which is

generally the case for arches used for structungdgses) the axial strain or the compression iratbhh

can be assumed constant. Therefore, we will supihatealso during buckling the compression in the

arch will remain constant and equaNe -pR Equations (9) become thus:

315



0
6E9vu«5 2UVvEDpLO
Metalikwv Kataokeumv

EYZTAOEIA METAAAIKQN KATAZKEYQN

e=-Ap, R'+P(U+V)=0 (11)
To solve equation (11), we have to go back to #tession of given by (2) and introduce a new
variabley=(u+v")/R, which actually represents the local rotationhaf beam. Equation (11) becomes:

y"'+pr=0 (12)

The solution of this equation is then:

y = Asinﬁ0+ Bcos.\/:p9 (13)
A and B are two constants which will be determined by lio&indary conditions atetwhere the
bending moment is zero (i.8(xa) =0):

Acos,/pa = Bsin/x = ( (14)
When the solution is not equal to zero, it is unmmed, so that we may consider that the arch buckles
Thus, there is a non-zero solution if:

)) \/605 = nr andB # 0, corresponding to antisymmetrical buckling modes,
i) \/ﬁx =(n+1/2)r andA# 0, corresponding to symmetrical buckling modes.

Considering the hypothesis that the compressiorairesrconstant during buckling, we must point out
that the valuen=0 is impossible for symmetrical buckling so that thst critical values are then the
values currently given by most authors for lindastc buckling of circular arches:

ant _ ﬂ'zEI syng 7Z'2E|
TR T A(Ray

(15)

4. EQUATIONS OF CIRCULAR ARCHES UNDER UNIFORM PRESTRESS

We suppose now that for some reason, intentionabgra prestress is introduced in the arch bafore
Is loaded. We assume that this prestress is uniédomg the arch, which means that it is independent
of 6. The prestressing strain can be divided into textgy one which is constant in the section and will
be denoted by,, and another, denoted, which is a function of the distangeo the neutral axis of the
beam, but has zero average. If the variable pati@prestressp, creates a bending moment, then this
bending moment is uniform along the arch and caulibcpted by introducing additional external
moments at both ends. The problem studied in #u8an is illustrated in figure 3.

WL
AL

/ AS
/ \
t& Mo Initial prestressed shape _MD g,

Figure 3: Prestressed arch with additional bendmgments
4.1 Assessment of energiesinduced by the prestress

The prestress induces a permanent strain enengadstdo the beam:
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= [ B’ Rmﬂj E( Y Ré dy (16)
- S -a
Then, when the arch is loaded and deforms undsespre, another energy*"** must be introduced. It
is linked with the prestress and corresponds tomiidk of internal forces due to the prestress i
displacements of the beam:

W Pres = jEs.e P R@+ﬂj y ¥ Rél dy (17)

Thus, the total energy of the loaded arckM‘§ WP + WP'™S + WP+ WA Next, like previously, the
local equations of equilibrium are determined byndading that the variation of the total energy is
equal to zero for any small displacemeris and 6V around the solution. Noting thaw® is
unchanged, one has just to evaludt®, SWP™SandoW™

SW° =0 (18)
aw*m:T ES:, o¢ R@+HT E( y & Ré dy (19)
oW =~ | PRI Moy ()+ Moy(-a) (20)

Then,0W®*is integrated by parts, taking into account thertolzmy conditions:

cSVVpres=j£ ES, (16U R+ Moy (a)- Noy(-a) (21)

4.2 Evaluation of the buckling load

To evaluate the buckling load we sum the aboveesgion with expressions (5) and require that the
terms in the integral must be equal to zero for smwll displacementéu and 6v. We obtain then the
equilibrium equations for the prestressed arch:

—Ay"—&'+(e+&,)y =0, /1}/"’—8—80—(8]/)’—ﬂl_)=0 (22)
Once again, we combine equations (22) to obtaimpler equation foe:
e+&"=-Ap-¢g, (23)

Then we assume that the compression remains comkstang buckling, so that we neglect the second
derivative ofe in (23). Equation (22) changes into:

e=-Ap-¢&,, y'+pyr=0 (24)
Considering these equations together with (11) @&), we remark that a uniform “pure bending”
prestress has no influence on the equilibrium egustand that onlyo, the prestress which is constant
in the section, will have consequence on the benhamd the buckling load. Indeed, following the
same argument as for the arch without prestresscamededuce the values of the critical external
pressure which will cause the first symmetrical antisymetrical buckling modes:

2 2
(pR):rnt _ T E|2 _ E%‘O, ( )sym 9 T E|2
(Ra) 4(Ra)
The critical pressure is thus linearly dependanth@naxial prestress. As expected, if the presigeas
compressioneg > 0), the critical buckling loads of the prestressezhawill be smaller than those of the
arch without prestress. This result is similaritattfound by Thompson and Hunt for shallelasticae
[3] or Clifton for shallow circular arches [10].

- ES, (25)
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5. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

A variational approach has been used to obtainyacall solutions for the buckling loads of simply-
supported, uniformly prestressed circular archeeunniform radial pressure. It has been deducad th
the bending part of prestressing has no influencé¢he buckling loads, while the critical presswse i
linearly dependant on the axial part of prestr&sg solutions can be easily extended to other aafses
loads and boundary conditions, which have not Ipeesented here due to lack of space.

Future research work of the authors will investggiis problem in the elasto-plastic range of mailter
behaviour, both during prestressing, and undelicetgads. Of particular interest is the case atpt
stresses and strains induced to the arch duringrtdeess of cold bending, which is routinely emply
for the curving of steel members at ambient tentpegaand involves substantial deformations of the
element. During bending, yielding takes place camgusly along the length, uniformly altering the
residual stress distribution. Assuming that the etpyocess is perfectly continuous and that thal fin
radius of curvature is constant along the archt tha steel is perfectly plastic and that the whole
section yields during bending, it is possible ta@lgtically evaluate residual stresses induced Ily ro
bending. Besides ensuring that these stressesatilhduce local buckling during bending, it witien
also be possible to introduce them as initial pesst and investigate the subsequent behaviour and
stability of the arch under service loads.
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HHEPIAHYH

H evotdBeia 10Ewv €xel peremBel extevig oto mapehBOv Kot £xovv avomtvydel TOAAES avaAVTIKEG
Moelg v vynAd Kot younid to&a. Eniong £éxovv onpooctevdei apbuntucég Avoelg yo ) evotddsio
TOE®V VT drhpopa poptia, evids kot ekTOG emmédov. Oume o€ avtég T perétes ta To&a Bempndnkav
erevbepa TACEMV GTNV OPYIKT, APOPTIOTN KaTdoToon Tovg. H mepintwon npoevietapévov t6Emv dev
EYXEL Y10 TNV OPO OVTIUETOTIOTEL. XTO TOPOV GpOpo eEeTdleTOn 1| EXPPON TG TPOEVIACGNG GTNV EVTOG
enmumédov evotabeia 16wy, H mpoévtaon umopei va eivar aBéAntn, .. AOY® TOL TPOTOV KOTOUCKEVTG
oV TOE0V, N MOeANUEVN, €hv OmOdEIKVETAL OTL PMOPEl Vo €lvol EVEPYETIKN Ylo. TNV UETEMELTO
CLUTEPLPOPA TOV TOEOV VIO PopTia. Edd eEetdletal | amhovoTePT TEPIMTTOOT EAAGTIKNG TPOEVTOOTG,
EVOD M MO oLVOETN EMIOTO-TAOGTIKY TEPITTMON, TOV GLVOLETAL LE TOPAUEVOVGEG TACELS AOY® TNG
dwdkaciog mapaymyns Ba aviyetoniotel 6to péALov. Xpnowomoteitar 1 pnéBodog Aoylopol TV
LETABOADV Yo TNV EVPECT] AVOAVTIKOV ADGEMV Y10 TO. POPTICL AVYIGUOV OUPIEPEIGTOV, OLOLOUOPPA
TPOEVIETAUEVOV KUKMK®OV TOE®V vtd opoldpopen aktvikny mieon. Ot AVcelg pmopovv 0KoAo va,
EMEKTAOOVV KOl Y10, AALEC TEPIMTAOGELS POPTIOV KAl GVVOPLUKDY GUVONKDV.
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