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1. SUMMARY 
 
The stability of arches has been studied abundantly in the past and many analytical solutions for high 
and shallow arches have been developed. Numerical solutions for in-plane and out-of-plane stability 
under different loadings have also been published. However, in these studies the arches are assumed to 
be stress-free in their initial, unloaded condition. The case of prestressed arches has not been addressed 
so far. In this paper the influence of prestressing in the in-plane stability of arches is investigated. 
Prestressing may be unintentional, due to the fabrication process of the arch, or intentional, if it proves 
to be beneficial for the arch’s structural behavior. The simpler case of elastic prestressing is addressed 
here, while the more complex case of elasto-plastic residual stresses due to the fabrication process will 
be the objective of future studies. Variational methods are used to obtain analytical solutions for the 
buckling loads of simply-supported, uniformly prestressed circular arches under uniform radial 
pressure. The solutions can be easily extended to other cases of loads and boundary conditions.  
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2. STATE OF ART ON IN-PLANE STABILITY OF ARCHES 

 
When subjected to compressive forces, circular arches with restrained lateral displacements may buckle 
in their plane in an asymmetrical mode, or in a symmetrical mode, which is then called snap-through. 
From the viewpoint of buckling analysis, it is useful to distinguish two basic types of arches: high 
arches and shallow arches. For high arches, the centre line of the arch may be considered as 
incompressible, whereas for flat arches, its shortening is important [1]. What is often referred to as the 
classical theory of buckling, is actually based on inextensibility of the arch and provides thus analytical 
solutions for high arches. In this approach, the elastic buckling load is determined by introducing 
second order effects of the compressive stress in the equilibrium equation of the bending moment, like 
in elementary theory of column buckling (see for example [2]).  
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For shallow arches, some authors propose to use a sinusoidal curve approximation of the circular arch 
and a development of the external load in Fourier series [1,3]. This solution has provided interesting 
results, especially for imperfection sensitivity. A significant improvement in the study of shallow 
arches was Schreyer’s and Masur’s exact solution of the nonlinear equilibrium equations subjected to 
either uniform pressure or concentrated central load [4]. This solution, based on the energy method, 
was adopted by many authors, among them the group of Trahair and Bradford from the University of 
New South Wales in Sidney [5]. Their research aims at understanding the influence of the non-linear 
pre-buckling deformation on the buckling load of arches and it confirmed that they can be only 
neglected for high arches. They applied their method to a wide variety of problems, from elastic 
stability of steel sections [6] to creep buckling of concrete arches [7] and also flexural torsional 
buckling of arches under compression [8] or bending [9]. 
 
Few authors have been concerned by the influence of prestress on the stability of circular arches. 
Clifton used the analytical solution of Schreyer and Masur, in which he introduced an initial normal 
prestress and quantified its influence on buckling loads and buckling modes [10]. Except of this paper, 
most research on the subject of prestressed arches focused on the elastica, which is actually the post-
buckled curve of a straight beam. Thompson and Hunt developed an energy model based on Taylor’s 
series, applied it to a trigonometric first order approximation of the elastica and confirmed Clifton’s 
results. They found that the buckling load was linearly dependant on the average axial prestress, and 
that the higher the initial compression, the smaller the critical buckling load [3].  
 
A lot of numerical work (and also experimental work in a centrifuge [11]) was also done in the 
University of Maryland, where Mirmiran, Amde and Wolde-Tinsae developed an innovative concept of 
dome made of prestressed sandwich arches [12]. They studied first the simple elastica and found that 
“residual compressive stresses that result when the prestressed arch framework is formed have a 
negative effect on the stability of its member” [13]. Then, improving their concept by transforming it 
into a sandwich framework, they concluded that if the “prestressing is applied separately to the layers 
of the sandwich section, unlike single elastica arches, the resulting arch will be as stable as its rigid or 
non-prestressed counterpart” [12]. This surprising result is actually linked with the fact that after gluing 
together the different layers in the sandwich, the inertia of the arch is dramatically increased, so that the 
sum of the prestress in the layers is negligible in comparison to the buckling load of the arch. 
 
Hence, the stability of circular arches has been abundantly studied in the past, analytically and 
numerically. In most studies, the arches are assumed to be stress-free in their initial, unloaded 
condition. Indeed, with the exception of the very specific case of elastica, the case of prestressed arches 
has not been studied so far. This paper will thus study the influence of uniform prestress and be 
presented as follows. The next section describes the energy method used for the analytical calculation 
of buckling load for high arches without prestress. Section 4 is then concerned with the introduction in 
the model of uniform prestress in the arch. A brief discussion concludes the paper and emphasizes the 
future development of the model for the design of steel arches taking into account the residual stresses 
induced by the forming process. 
 
3. FIRST ORDER MODEL FOR ELASTIC BUCKLING OF CIRCULAR ARCHES 
For simplicity, the article focuses on circular arches subjected to uniform radial pressure (figure 1). 
Other loading cases such as concentrated forces or vertical uniform load will be discussed in future 
work; it has been established, however, that they do not really influence the main results of this article. 
Pinned boundary conditions have been chosen because they are most commonly used in practice. We 
shall also show in a future paper that this choice does not qualitatively alter our main results. For the 
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determination of the local equation of the behavior and of the buckling load of the arch, calculations 
will be based on an energy approach. It will be assumed that the beam is sufficiently slender so that 
Euler-Bernoulli model describes with good accuracy the strains during the whole transformation, which 
is considered as perfectly elastic and as inducing only small displacements and small rotations. 
 

 
Figure 1: Buckling modes of circular arches under uniform radial pressure. 

 
3.1 Principle of the variational method 
 
In the arch of figure 2, R is the radius and θ the characteristic angle defining a point located on the arch. 
Maximum values for θ are ±α. u and v are the tangential and radial displacements, respectively, 
positive when directed toward the center of the circle.  
 

 
Figure 2: Local axes of the arch. 

 
According to our hypothesis, the axial strain ε and curvature κ in the beam are given by: 
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It must be noted here that this non-linear expression slightly differs from that of Pi and Bradford [5] 
who are mainly concerned with the behavior of shallow arches. Indeed, with small values of α (<π/4 or 
<π/3 depending of the inertia properties of the section), one can show with a standard elastic structural 
analysis that the ratio |u/v'| is very small so that u can be neglected in the term in brackets in the 
expression of axial strain. This assumption allows Pi and Bradford to take initial strain into account for 
the determination of critical loads [5]. We, here, intend only to calculate the elastic buckling load with 
first order analysis and therefore can keep a more general expression for ε. 
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For conciseness of expressions, we introduce non-dimensional displacements u  and v , which denote 
the ratios u/R and v/R, respectively. Expressions in (1) are now written as following:  
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The strain energy Wdef associated with these deformations can be calculated from the Young’s modulus 
E, the section area S and the inertia I of the beam, while the potential energy Wext of the external forces 
can also be evaluated from the radial pressure p and the radial displacements: 
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At equilibrium, the total energy Wtot = Wext + Wdef is minimum. Therefore, for any small displacements 
uδ  and vδ  around the equilibrium solution, the variation of the total energy must be equal to zero: 

 
0def extu and v W Wδ δ δ δ∀ ∀ + =

 
(4)

 In the above equation, one has to expand the different terms and to explicit its dependency in uδ  
and vδ . From equations (3) the variation of energy of external forces and strain energy are: 
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In this expression, δε and δκ denote the variation of axial strain and curvature, evaluated from (2): 
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Introducing (6) into (5), integrating by parts and accounting for the boundary conditions, one obtains: 
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This expression must be equal to zero for any displacements uδ  and vδ , so that both terms in brackets 
in the integral must be zero: 

 
( ) 0EI ES ESR u vκ ε ε′ ′ ′− − + + = ,

 
     ( )( ) 2 0EI ES ESR u v pRκ ε ε

′
′′ ′− − + − =

 
(8)

 
These are the two equations of local equilibrium. To simplify them we introduce two new notations, the 
slenderness of the arch λ=i/R, where i is the inertia radius of the cross-section, and a nondimensional 
expression of the load, 3p pR EI= . By differentiating the first of equations (8) and adding it to the 
second, we get the final equations for non-linear local equilibrium of an arch under uniform pressure: 

 
pε ε λ′′ + = − ,

 
     ( ) 0R u vλ κ ε ε′ ′ ′− − + + =

 
(9)

  
3.2 Evaluation of buckling load 
 
The non-linearity introduced by the last term in the second of equations (9) does not allow us to find an 
exact analytical solution. Nevertheless, the study of the linear problem associated with these equations 
is straightforward and leads to: 
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where D(α) is a trigonometric function of α inferior to α. We remark that when λ is small (which is 
generally the case for arches used for structural purposes) the axial strain or the compression in the arch 
can be assumed constant. Therefore, we will suppose that also during buckling the compression in the 
arch will remain constant and equal to N= -pR. Equations (9)  become thus: 
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pε λ= − ,

 
     ( ) 0R p u vκ ′ ′+ + =

 
(11)

 To solve equation (11), we have to go back to the expression of κ given by (2) and introduce a new 
variable γ=(u+v')/R, which actually represents the local rotation of the beam. Equation (11) becomes: 

 
0pγ γ′′ + =

 
(12)

 The solution of this equation is then: 

 
sin cosA p B pγ θ θ= +

 
(13)

 A and B are two constants which will be determined by the boundary conditions at ±α where the 
bending moment is zero (i.e. γ’(±α) = 0 ):  

 
cos sin 0A p B pα α= =

 
(14)

 When the solution is not equal to zero, it is unbounded, so that we may consider that the arch buckles. 
Thus, there is a non-zero solution if: 

i) p nα π=  and B ≠ 0, corresponding to antisymmetrical buckling modes, 

ii) ( )1 2p nα π= +  and A ≠ 0, corresponding to symmetrical buckling modes. 

 
Considering the hypothesis that the compression remains constant during buckling, we must point out 
that the value n=0 is impossible for symmetrical buckling so that the first critical values are then the 
values currently given by most authors for linear elastic buckling of circular arches: 
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4. EQUATIONS OF CIRCULAR ARCHES UNDER UNIFORM PRESTRESS 
 
We suppose now that for some reason, intentional or not, a prestress is introduced in the arch before it 
is loaded. We assume that this prestress is uniform along the arch, which means that it is independent 
of θ. The prestressing strain can be divided into two parts, one which is constant in the section and will 
be denoted by ε0, and another, denoted κ0, which is a function of the distance y to the neutral axis of the 
beam, but has zero average. If the variable part of the prestress, κ0, creates a bending moment, then this 
bending moment is uniform along the arch and can equilibrated by introducing additional external 
moments at both ends. The problem studied in this section is illustrated in figure 3. 

 
Figure 3: Prestressed arch with additional bending moments 

 
4.1 Assessment of energies induced by the prestress 
 
The prestress induces a permanent strain energy stored into the beam: 
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Then, when the arch is loaded and deforms under pressure, another energy Wpres must be introduced. It 
is linked with the prestress and corresponds to the work of internal forces due to the prestress with the 
displacements of the beam: 
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Thus, the total energy of the loaded arch is Wtot = W0 + Wpres + Wext + Wdef. Next, like previously, the 
local equations of equilibrium are determined by demanding that the variation of the total energy is 
equal to zero for any small displacements uδ  and vδ  around the solution. Noting that δWdef is 
unchanged, one has just to evaluate δW0, δWpres and δWext: 
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Then, δWpres is integrated by parts, taking into account the boundary conditions: 
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4.2 Evaluation of the buckling load 
 
To evaluate the buckling load we sum the above expression with expressions (5) and require that the 
terms in the integral must be equal to zero for any small displacements uδ  and vδ . We obtain then the 
equilibrium equations for the prestressed arch: 
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(22)

 Once again, we combine equations (22) to obtain a simpler equation for ε: 

 
0pε ε λ ε′′+ = − −

 
(23)

 Then we assume that the compression remains constant during buckling, so that we neglect the second 
derivative of ε in (23). Equation (22) changes into: 

 
0pε λ ε= − − ,

 
     0pγ γ′′ + =

 
(24)

 Considering these equations together with (11) and (12), we remark that a uniform “pure bending” 
prestress has no influence on the equilibrium equations and that only ε0, the prestress which is constant 
in the section, will have consequence on the behavior and the buckling load. Indeed, following the 
same argument as for the arch without prestress, we can deduce the values of the critical external 
pressure which will cause the first symmetrical and antisymetrical buckling modes: 

 
( )

( )

2

02

ant

cr

EI
pR ES

R

π

ε

α

= − ,
 
     ( )

( )

2

02

9

4
sym

cr

EI
pR ES

R

π

ε

α

= −

 
(25)

 

The critical pressure is thus linearly dependant on the axial prestress. As expected, if the prestress is a 
compression (ε0 > 0), the critical buckling loads of the prestressed arch will be smaller than those of the 
arch without prestress. This result is similar to that found by Thompson and Hunt for shallow elasticae 
[3] or Clifton for shallow circular arches [10]. 
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5. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 
 
A variational approach has been used to obtain analytical solutions for the buckling loads of simply-
supported, uniformly prestressed circular arches under uniform radial pressure. It has been deduced that 
the bending part of prestressing has no influence on the buckling loads, while the critical pressure is 
linearly dependant on the axial part of prestress. The solutions can be easily extended to other cases of 
loads and boundary conditions, which have not been presented here due to lack of space. 
 
Future research work of the authors will investigate this problem in the elasto-plastic range of material 
behaviour, both during prestressing, and under service loads. Of particular interest is the case of plastic 
stresses and strains induced to the arch during the process of cold bending, which is routinely employed 
for the curving of steel members at ambient temperature, and involves substantial deformations of the 
element. During bending, yielding takes place continuously along the length, uniformly altering the 
residual stress distribution. Assuming that the whole process is perfectly continuous and that the final 
radius of curvature is constant along the arch, that the steel is perfectly plastic and that the whole 
section yields during bending, it is possible to analytically evaluate residual stresses induced by roll 
bending. Besides ensuring that these stresses will not induce local buckling during bending, it will then 
also be possible to introduce them as initial prestress and investigate the subsequent behaviour and 
stability of the arch under service loads. 
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ΠΕΡΙΛΗΨΗ 
 
Η ευστάθεια τόξων έχει µελετηθεί εκτενώς στο παρελθόν και έχουν αναπτυχθεί πολλές αναλυτικές 
λύσεις για υψηλά και χαµηλά τόξα. Επίσης έχουν δηµοσιευθεί αριθµητικές λύσεις για τη ευστάθεια 
τόξων υπό διάφορα φορτία, εντός και εκτός επιπέδου. Όµως σε αυτές τις µελέτες τα τόξα θεωρήθηκαν 
ελεύθερα τάσεων στην αρχική, αφόρτιστη κατάστασή τους. Η περίπτωση προεντεταµένων τόξων δεν 
έχει για την ώρα αντιµετωπιστεί. Στο παρόν άρθρο εξετάζεται η επιρροή της προέντασης στην εντός 
επιπέδου ευστάθεια τόξων. Η προένταση µπορεί να είναι αθέλητη, π.χ. λόγω του τρόπου κατασκευής 
του τόξου, ή ηθεληµένη, εάν αποδεικνύεται ότι µπορεί να είναι ευεργετική για την µετέπειτα 
συµπεριφορά του τόξου υπό φορτία. Εδώ εξετάζεται η απλούστερη περίπτωση ελαστικής προέντασης, 
ενώ η πιο σύνθετη ελαστο-πλαστική περίπτωση, που συνδέεται µε παραµένουσες τάσεις λόγω της 
διαδικασίας παραγωγής θα αντιµετωπιστεί στο µέλλον. Χρησιµοποιείται η µέθοδος λογισµού των 
µεταβολών για την εύρεση αναλυτικών λύσεων για τα φορτία λυγισµού αµφιέρειστων, οµοιόµορφα 
προεντεταµένων κυκλικών τόξων υπό οµοιόµορφη ακτινική πίεση. Οι λύσεις µπορούν εύκολα να 
επεκταθούν και για άλλες περιπτώσεις φορτίων και συνοριακών συνθηκών. 
 


