
 

 474 

 
 
 
 

A ROD ELEMENT FORMULATION FOR THE NONLINEAR DYNAMIC 
ANALYSIS OF TRUSSES. 

 
 

Savvas P. Triantafyllou, Vlasis K. Koumousis 
Institute of Structural Analysis & Aseismic Research 

National Technical University of Athens 
NTUA, Zographou Campus GR-15773, Athens, Greece 
e-mail: savtri@central.ntua.gr, vkoum@central.ntua.gr  

 
 

 
ABSTRACT 

 
In this work, an alternative rod element formulation is proposed for the nonlinear dynamic 
analysis of trusses. The classical, geometrically nonlinear elastic rod element formulation 
is extended by implicitly defining new, hysteretic, degrees of freedom, subjected to an 
evolution equation of the Bouc Wen type with kinematic hardening. An interpolation field 
is proposed for the new degrees of freedom, which are regarded as hysteretic strains. By 
means of the principle of virtual work a geometrically nonlinear elastoplastic stiffness 
matrix is derived. This stiffness matrix together with the hysteretic evolution equations 
fully describes the constitutive behavior of the element. Solutions are obtained by 
simultaneously solving the three sets of governing equations of the structure, namely the 
global equilibrium equations, global compatibility equations and local constitutive 
equations. A Livermore solver for stiff differential equations is implemented. Following 
this approach, the linearization of the constitutive relations is avoided, contrary to the usual 
step – by – step solution approaches. Furthermore, stability problems can be studied as a 
dynamic phenomenon. The efficiency of the proposed method is demonstrated with a 
characteristic example. 
 
1 Introduction 
 
With the advancement in computer technology, many researchers direct their efforts 
toward nonlinear analysis of structures. In this field, two major approaches have been 
adopted. The displacement based finite element approach and the force based finite 
element approach. The primary unknowns in the latter method are the internal element 
forces instead of the nodal displacements used in the former method. Amjad et al. (2001) 
and Barham et al. (2000, 2005) made use of the large increment method in order to solve 
the nonlinear equations of motion. 
 
Nonlinearities in a structural system can have a profound effect on its transient structural 
response. Trusses usually have higher natural frequencies compared to relevant solid 
structures, because of their high stiffness-to-mass ratio. The nonlinearity of trusses under 
dynamic loading can stem from various origins: (i) geometrical-due to the variations in the 
geometrical properties of the structure as the load progresses; (ii) material-due to the 
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inherent nonlinear behaviour of the materials under load; (iii) inertia-depending on the 
dynamic motion and the structural deformations; and (iv) damping depending on the 
structural joints and material. In this work a novel analysis procedure together with a fully 
nonlinear rod element are presented. The rod element is constructed on the grounds of an 
updated Lagrangian formulation together with a Bouc Wen inelastic law. Equilibrium and 
compatibility equations are expressed for the whole structure in terms of global nodal 
forces and global nodal displacements. In this way, equilibrium and compatibility 
equations are linear. Material nonlinearity is maintained at the elemental level through 
proper implementation of the Bouc-Wen hysteretic rule. 

2 The Bouc-Wen hysteretic rule 
 
The smooth model presented herein is a variation of the model originally proposed by 
Bouc (1967) and modified by several others (Wen 1976, Baber Noori 1985, Cherng 1991, 
Reinhorn 2000, 2003). The model is developed in the context of uniaxial stress-strain 
relationships. The use of such a hysteretic constitutive law is necessary for the effective 
simulation of the behavior of structures under cyclic loading, since often structures that 
undergo inelastic deformations and cyclic behavior weaken and loose some of their 
stiffness and strength. The model can be visualized as a parallel combination of a linear 
and a nonlinear element, as shown in Figure 1. The generalized stress - strain relation is 
given by: 
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where σy is the yield stress; εy is the yield strain; E is the initial Young Modulus, α is the 
ratio of the post-yield to the initial elastic stiffness and z(t) is the hysteretic component 
defined in relation (2) below. 

 
Figure 1. Bouc-Wen Hysteretic Model 

The hysteretic function z(t) is obtained from the non-linear differential equation: 
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where dot designates differentiation with respect to time. It can be easily noticed that the 
hysteretic curvature should comply with the following rules: 
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3 Space Truss Element Formulation 

3.1 Kinematic Relations 
In the framework of large displacements, the axial strain of the rod element is expressed as: 

 x x xε e η= +   (3) 

where ex is the linear part of the strain: 
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and ηx is the nonlinear part of the axial strain: 
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3.2 Hysteretic Strain 
The following nonlinear law applies for the stress-strain relation: 

 ( ) ( ) ( )x xσ (s,t)=αEε s,t + 1-α Ez s,t  (6) 

where the axial strain εx is derived from equations (3) to (5) and z can be considered to be 
the hysteretic part of the strain subjected to the evolution equation described in relation (2). 

3.3 Interpolation Field and Functions 
Implementing the linear interpolation functions for the displacement field one gets: 
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The strain field is derived from the displacement field, by substituting (7) in (4), (5) thus 
leading to the following formulation: 
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An interpolation scheme is also introduced for the hysteretic part of the strain. Assuming a 
constant strain distribution, the hysteretic part of the strain is obtained as: 
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where z1 and z2 are nodal hysteretic strains subject to the evolution law of relation (2). 

3.4 Stiffness Matrix 
The principle of virtual work is stated by the following relation: 

 { } { }T
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By substituting (6) and (3) in (11) one gets: 
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Taking into consideration equations (7) to (10) and after the necessary algebraic 
manipulations the following constitutive relation is derived: 
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Matrices kg, ks, s1, s2, s3 are the same as in the updated Lagrangian formulation of the two 
node truss element [10] multiplied by α and Kz is defined as: 
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4 Solution procedure 

4.1 Formulation of the governing equations 
 
The main advantage of the proposed method is that it separates the problem into two sets 
of equations and is based on the node method as described in [9]. The first set consists of 
the global linear equilibrium and compatibility equations, while the second one of local 
nonlinear constitutive equations, together with the hysteretic evolutionary equations. These 
sets of equations are solved simultaneously using a Runge–Kutta 4-5th order integrator. 
The primary unknowns of the method are the generalized forces of the elements (3nel), the 
nodal displacements expressed in the global coordinate system (3nodes), and the hysteretic 
strains (2nel). The dynamic equations of equilibrium are written in the following mixed 
form: 

 [ ]{ } [ ]{ } ( ){ }M U C F P t+ =&&  (15) 

where {U} is the vector of nodal displacements in the global coordinate system, [C] is the 
equilibrium matrix of the structure, {F} is the vector of elemental forces in the local 
coordinated system and P(t) the vector of nodal external loads. For the case of trusses, the 
equilibrium matrix is merely the connectivity matrix of the structure. These equations are 
linear with respect to the nodal displacements and the internal forces. The compatibility 
equations of the problem can be formulated using the following expression: 

 [ ] { } { }T
C U δ=  (16) 

where {δ} is the vector of the elemental generalized displacements. Alternatively, 
compatibility can be accomplished by demanding: 

 i i
el, j jU U , i 1...nodes, j x, y,z= = =  (17) 

where i
el, jU  is the elements nodal displacement expressed in the global coordinates system. 

The boundary conditions of the problem are also introduced in this stage. Finally, the 
constitutive relations are written in local level, in the form: 

 [ ] [ ] { } { }ztot tot
K Λ U F=  (18) 

where [K]tot is a 6n x 8n block diagonal matrix, having each element’s generalized stiffness 
matrix in its diagonal, n being the total number of elements in the structure and [ ]z tot

Λ is a 

8nx8n block diagonal matrix, with elements the 8x8 transformation matrices of the 
elements consisting of the standard 6x6 transformation matrices having two additional 
ones in the 7th and 8th diagonal entries and zeros elsewhere, as z doesn’t change in the 
plane being a scalar quantity 

5 Numerical Example 
 
A shallow arch is examined with a rise to span ratio of about 2%. The geometry and the 
mechanical properties of the truss are summarized in Figure 2. The arch is considered 
restrained against out of plane motions. Pinned boundary conditions are imposed at both 
ends of the structure. An additional mass of 3.5 KN is considered to be lumped at each 
node of the lower chord. 
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Figure 2. Shallow Arch Configuration 
 
Two analyses are performed. In the first, material nonlinearities are neglected while in the 
second both material and geometric nonlinearities are considered. A sinusoidal vertical 
excitation is imposed at the upper midspan node of the following form: 

 ( )= pexP 15 sin t  (19) 

Four cycles of the imposed excitation are considered. In Figure 3 the time history of the 
vertical displacement at midspan is compared for the two analysis procedures. The 
difference between the two analysis procedures is substantial. Due to geometric 
nonlinearities the stiffness of the structure is constantly changing as depicted in the graph. 
If material nonlinearities are taken into account then the truss collapses at 4.1 secs. 
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Figure 3. Vertical Displacement at midspan 

Due to material yielding, the structure demonstrates hysteretic behavior as presented in the 
hysteretic loops of Figure 4, where the axial force of the midspan chord member is plotted 
against the member’s axial displacement. 
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Figure 4. Nonlinear hysteresis loop due to material yield and geometric nonlinearities. 
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6 Conclusions 
A new truss element formulation is presented, together with an alternative method for the 
solution of the nonlinear equations of motion. By writing down the governing equations in 
state space form and implementing a Livermore integrator the linearization of the 
constitutive equations is avoided. The Bouc-Wen hysteretic model is implemented in order 
to simulate the nonlinear constitutive behavior of the material, in terms of stress - strain 
relation. Various loops can be modeled by properly controlling the parameters of the 
hysteresis law, namely the “yield” strain, the smoothing parameter n, and the shape factors 
beta and gamma. The problem is partitioned into three sets of equations, which are solved 
simultaneously. The numerical examples presented demonstrate the validity of the 
proposed approach as well as its versatility as compared to displacement formulation. 
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ΠΕΡΙΛΗΨΗ 

 
Στο άρθρο αυτό παρουσιάζεται µια εναλλακτική διατύπωση ενός µη γραµµικού στοιχείου 
δικτυώµατος και µια νέα µέθοδος επίλυσης δικτυωτών κατασκευών. Το τυπικό στοιχείο 
δικτυώµατος µε γεωµετρικές µη γραµµικότητες κατά την προσαρµοστική διατύπωση 
Lagrange µετατρέπεται σε ένα ελαστοπλαστικό στοιχείο µε την κατάλληλη προσθήκη 
υστερητικών βαθµών ελευθερίας. Ο ελαστοπλαστικός πίνακας δυσκαµψίας σε συνδυασµό 
µε τις µη γραµµικές υστερητικές εξισώσεις επαρκούν για την πλήρη απόδοση της µη 
γραµµικής συµπεριφοράς του στοιχείου υπό µονοτονική ή ανακυκλιζόµενη φόρτιση. Για 
την επίλυση του συστήµατος των µη γραµµικών εξισώσεων το πρόβληµα διατυπώνεται ως 
σύστηµα µονοβάθµιων διαφορικών εξισώσεων το οποίο επιλύεται χρησιµοποιώντας τον 
αλγόριθµο Livermore. Οι εξισώσεις που διέπουν το σύστηµα διακρίνονται στις γραµµικές 
εξισώσεις ισορροπίας της κατασκευή, τις γραµµικές εξισώσεις συµβιβαστού και τις µη 
γραµµικές καταστατικές εξισώσεις των µελών. Κατ’ αυτόν τον τρόπο αποφεύγεται η 
γραµµικοποίηση των καταστατικών εξισώσεων και αυξάνεται σηµαντικά η ταχύτητα 
επίλυσης του προβλήµατος, σε αντίθεση µε τις κλασικές βήµα προς βήµα µεθόδους. 
Επιπλέον, τα προβλήµατα ευστάθειας αντιµετωπίζονται εύκολα ως δυναµικά προβλήµατα. 
Τέλος παρουσιάζεται ένα χαρακτηριστικό παράδειγµα το οποίο καταδεικνύει την 
αποδοτικότητα του αλγορίθµου επίλυσης. 
 

 


