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ABSTRACT

In this work, an alternative rod element formulatie proposed for the nonlinear dynamic
analysis of trusses. The classical, geometricadlylinear elastic rod element formulation
is extended by implicitly defining new, hysteretaggrees of freedom, subjected to an
evolution equation of the Bouc Wen type with kingimaardening. An interpolation field
is proposed for the new degrees of freedom, whiehregarded as hysteretic strains. By
means of the principle of virtual work a geometficanonlinear elastoplastic stiffness
matrix is derived. This stiffness matrix togetheithmthe hysteretic evolution equations
fully describes the constitutive behavior of theemeént. Solutions are obtained by
simultaneously solving the three sets of govermggations of the structure, namely the
global equilibrium equations, global compatibilitgquations and local constitutive
equations. A Livermore solver for stiff differertiaquations is implemented. Following
this approach, the linearization of the constitaitiglations is avoided, contrary to the usual
step — by — step solution approaches. Furthernstabjlity problems can be studied as a
dynamic phenomenon. The efficiency of the proposethod is demonstrated with a
characteristic example.

1 Introduction

With the advancement in computer technology, maesearchers direct their efforts
toward nonlinear analysis of structures. In thildfj two major approaches have been
adopted. The displacement based finite elementoappr and the force based finite
element approach. The primary unknowns in therlatiethod are the internal element
forces instead of the nodal displacements usebdrfdrmer method. Amjad et al. (2001)
and Barham et al. (2000, 2005) made use of the lexgrement method in order to solve
the nonlinear equations of motion.

Nonlinearities in a structural system can havedaqgund effect on its transient structural
response. Trusses usually have higher natural éreges compared to relevant solid
structures, because of their high stiffness-to-mmage. The nonlinearity of trusses under
dynamic loading can stem from various originsg@pmetrical-due to the variations in the
geometrical properties of the structure as the Ipezhresses; (ii) material-due to the
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inherent nonlinear behaviour of the materials unded; (iii) inertia-depending on the
dynamic motion and the structural deformations; &)l damping depending on the
structural joints and material. In this work a nlo&ealysis procedure together with a fully
nonlinear rod element are presented. The rod elermaonstructed on the grounds of an
updated Lagrangian formulation together with a B@den inelastic law. Equilibrium and
compatibility equations are expressed for the wisitecture in terms of global nodal
forces and global nodal displacements. In this weguilibrium and compatibility
equations are linear. Material nonlinearity is niaiimed at the elemental level through
proper implementation of the Bouc-Wen hysteretle.ru

2 TheBouc-Wen hystereticrule

The smooth model presented herein is a variatiothefmodel originally proposed by
Bouc (1967) and modified by several others (Wen6l®aber Noori 1985, Cherng 1991,
Reinhorn 2000, 2003). The model is developed indbetext of uniaxial stress-strain
relationships. The use of such a hysteretic carsté law is necessary for the effective
simulation of the behavior of structures under icytbading, since often structures that
undergo inelastic deformations and cyclic behawi@aken and loose some of their
stiffness and strength. The model can be visualgged parallel combination of a linear
and a nonlinear element, as shown in Figure 1.géweralized stress - strain relation is
given by:

()
o(t)= o, }@n eV, )&{= aEe(t) + @- a)Ez(t) (1)
Sy 1:)
whereoy is the yield stress is the yield strain; E is the initial Young Mods|w is the

ratio of the post-yield to the initial elastic #tiéss and z(t) is the hysteretic component
defined in relation (2) below.
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Figure 1. Bouc-Wen Hysteretic Model

The hysteretic function z(t) is obtained from the#ioear differential equation:

n

(8+7sor()) @

2(t) = f(4(1), z(t)) = 4| 1- ¢Z

y

where dot designates differentiation with respectirhe. It can be easily noticed that the
hysteretic curvature should comply with the follogirules:

Z = e, in the elastic region

z = g,,in the inelastic regic
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3 Space Truss Element For mulation

3.1 Kinematic Relations
In the framework of large displacements, the asiiadin of the rod element is expressed as:

€ = ex + Nx )

where g is the linear part of the strain:

(4)

andny is the nonlinear part of the axial strain:
2 u 2 20
ﬂle ﬂux%+éﬂ—y%+é&%{' (5)
217X iy Tz %,
3.2 Hysteretic Strain

The following nonlinear law applies for the strestisain relation:
o, (s,t)=Ee, (s,t) H(1a)Ez(s,) (6)

where the axial straigy is derived from equations (3) to (5) and z carcdwesidered to be
the hysteretic part of the strain subjected toeth@ution equation described in relation (2).

3.3 Interpolation Field and Functions
Implementing the linear interpolation functions tbe displacement field one gets:

0 0

—|w
o

(7)

tmém
QQCCD<C@CD@
I
RAAAAARAAAAABRT
o o
e
o
|
i
o
o
lw
-
LAY~ N S
e

G={u¢ & ¢ ¢ ¢ ¢

The strain field is derived from the displacemealdf by substituting (7) in (4), (5) thus
leading to the following formulation:

e= (B] +[8, {3 ®

where:

476



0
EBvVIKO ZuvEdplo
EIAIKA OEMATA 6M8TOM1K(bv Kataokeudv

Bl=x~- 0o 0o - o ¢
KL L b
B =A% (A% A Auo AU Aug
N 212 2L° 2L 212 2L 2L

Au =- U+ U Au =-u +uyAu =-u+u

An interpolation scheme is also introduced for tilgsteretic part of the strain. Assuming a
constant strain distribution, the hysteretic pathe strain is obtained as:

@1$?%JJ§§ )

where z and z are nodal hysteretic strains subject to the eimidaw of relation (2).

34 Stiffness Matrix
The principle of virtual work is stated by the foNing relation:

¢ Be26dV = {3{P (11)
\Y
By substituting (6) and (3) in (11) one gets:

¢ Ge + on, pE(e + n)+ (- )EZPV={G{ P (12)

Taking into consideration equations (7) to (10) aaiter the necessary algebraic
manipulations the following constitutive relatiaderived:

1§ (fge) 9 @9 (39 (}xa(o
Mot kv sv s+ s | kifdk=4p
54444444444444442 AAAAANAANNNINGS &)

(13)
(6x8)

B={r 5 & 2 p P}

Matrices k, ks, 51, $, s are the same as in the updated Lagrangian forioalaf the two
node truss element [10] multiplied byand K; is defined as:

;
1
e AL AL A AL A
K2l 2L 2 2L 2 i
[K]=(1- 9 EAX { (14)
X 1- Ao AL Ay 14 A A {
K 2L 2L 2 2L 2 L %
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4  Solution procedure

4.1 Formulation of the governing equations

The main advantage of the proposed method is ths&parates the problem into two sets
of equations and is based on the node method asiluks in [9]. The first set consists of
the global linear equilibrium and compatibility edions, while the second one of local
nonlinear constitutive equations, together with llgsteretic evolutionary equations. These
sets of equations are solved simultaneously usifRpage—Kutta 4-5 order integrator.
The primary unknowns of the method are the germm@lforces of the elements (3nthe
nodal displacements expressed in the global coatgisystem (3nodes), and the hysteretic
strains (2g). The dynamic equations of equilibrium are writtenthe following mixed
form:

MI{&}+ [cK & = {e)} (15)

where {U} is the vector of nodal displacementshe global coordinate system, [C] is the
equilibrium matrix of the structure, {F} is the wec of elemental forces in the local
coordinated system and P(t) the vector of nodadresl loads. For the case of trusses, the
equilibrium matrix is merely the connectivity matof the structure. These equations are
linear with respect to the nodal displacements tedinternal forces. The compatibility
equations of the problem can be formulated usiegdhowing expression:

[CT{g {¥ (16)

where {} is the vector of the elemental generalized disptaents. Alternatively,
compatibility can be accomplished by demanding:
Ui

el,j

= U, i=1..nodes, ¥ X, 17)

where U‘eu is the elements nodal displacement expressecigltibal coordinates system.

The boundary conditions of the problem are alsoodhced in this stage. Finally, the
constitutive relations are written in local levial the form:

KL [A] L O £3F (18)

where [K]ot is @ 6n x 8n block diagonal matrix, having eadmednt’s generalized stiffness
matrix in its diagonal, n being the total numberet#fments in the structure afu,] _is a

8nx8n block diagonal matrix, with elements the 8x&nsformation matrices of the
elements consisting of the standard 6x6 transfoomatatrices having two additional
ones in the 7 and &' diagonal entries and zeros elsewhere, as z doebaftge in the
plane being a scalar quantity

5 Numerical Example

A shallow arch is examined with a rise to spanorafi about 2%. The geometry and the
mechanical properties of the truss are summarineBigure 2. The arch is considered
restrained against out of plane motions. PinnechBlary conditions are imposed at both
ends of the structure. An additional mass of 3.5 iKNonsidered to be lumped at each
node of the lower chord.
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Figure 2. Shallow Arch Configuration

Two analyses are performed. In the first, matar@ilinearities are neglected while in the
second both material and geometric nonlinearitres cmnsidered. A sinusoidal vertical
excitation is imposed at the upper midspan nodbefollowing form:

P = 15sin(p D (19)

Four cycles of the imposed excitation are consulehe Figure 3 the time history of the
vertical displacement at midspan is compared fa two analysis procedures. The
difference between the two analysis procedures ubstantial. Due to geometric
nonlinearities the stiffness of the structure iastantly changing as depicted in the graph.
If material nonlinearities are taken into accounart the truss collapses at 4.1 secs.
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Figure 3. Vertical Displacement at midspan

Due to material yielding, the structure demonsgditgsteretic behavior as presented in the
hysteretic loops of Figure 4, where the axial fav€¢he midspan chord member is plotted
against the member’s axial displacement.
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Figure 4. Nonlinear hysteresis loop due to mateigltl and geometric nonlinearities.
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6 Conclusions

A new truss element formulation is presented, togrewith an alternative method for the
solution of the nonlinear equations of motion. Bytiwvg down the governing equations in
state space form and implementing a Livermore natieg the linearization of the
constitutive equations is avoided. The Bouc-Wertdrgtic model is implemented in order
to simulate the nonlinear constitutive behaviortled material, in terms of stress - strain
relation. Various loops can be modeled by propedwtrolling the parameters of the
hysteresis law, namely the “yield” strain, the stinrog parameter n, and the shape factors
beta and gamma. The problem is partitioned inteettsets of equations, which are solved
simultaneously. The numerical examples presenteshodstrate the validity of the
proposed approach as well as its versatility aspawed to displacement formulation.
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IHEPIAHYH

210 GpOpo avTd TOPOVOIALETOL Lo EVOAAAKTIKT SLTOTMGT] EVOC U YPOUUKOD GTolyEiOD
SKTVONATOS Kol e véa néBodog emilvong SikTveTdV Katackevdv. To Tumkd otoryeio
OIKTUOUATOC E YEMUETPIKES UM YPOUUIKOTNTEG KOTA TNV TPOGOPUOCTIKY OTOHTMOON
Lagrangepstatpénetal o€ €va EAMUGTOTAACTIKO OTOXElo [E TNV KATAAANAN TpocOHnKn
votepnTIK®V Babudv erevbepioc. O ehacTOMAAGTIKOC TivoKag SVoKAUYiNg og cUVOLACUO
HE TIC UM YPOUUIKES VOTEPNTIKEG €EICMOELS EMOPKOVY YO TNV TANPN amdOOOGN NG U
YPOLUUKNG GUUTEPLPOPAS TOV GTOLXEIOL VIO LOVOTOVIKN 1 avakvkAiopevn eoption. [
TNV ETAVGN TOV GLGTHLOTOS TOV UM YPUUUKAOV EEICOGEMV TO TPOPANLLA OLUTLTMOVETOL MG
oLGTNHO HOVOPAOLIOV JaPoPIKOV £EIGMGEMY TO OTOl0 EMADETOL YPTCLULOTOLDVTIOS TOV
alyopiBuo Livermore.Ot e£lo®oelg Tov S1EMOVY T0 GUOTIHO SIKPIVOVTOL GTLG YPOUUIKES
€€10MOELG 100PPOTHOG TNG KOTAGKELN, TIC YPOUUMKES eEloMOES cuuUPifacTod Kot TIG U
YPOUUKEG KOTAOTATIKEG eElomoelg tov pehdv. Kot avtév tov 1pdmo amopsdystor m
YPOLUUKOTOINGY] TOV KOTOOTATIKOV €E10MCEMV Kol OLEAVETOL CNUAVTIKE 1) TOYXVTNTO
emilvong tov mpoPAnuatog, o€ avtibeon pe TIC KAAOWKES PApa mpog Prjne pebddovg.
Emumléov, ta mpofinuota svotdbeiag ovtipetomiloviol EDKOAN MG SOLVOULKE TPOBANUATO.
Téhog mapovoidletar €va YOPAKTNPIGTIKO TOPAOEIYHO TO OTOI0 KOTAOSIKVOEL TNV
ATod0TIKOTNTO TOL aAYOPiOOVL ETIAVONC.
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