0
6E9vu(é 2UVEDpLO
MetaAkov Kataokeumv

EIAIKA OEMATA

A THIN WALLED BEAM ELEMENT FORMULATION FOR THE NON
UNIFORM TORSION AND DISTORTION OF CLOSED SECTIONS

Emmanouil N. Chatzis, Savvas P. Triantafyllou and Vlasis K. Koumousis

Institute of Structural Analysis & Aseismic Resdarc
National Technical University of Athens
NTUA, Zographou Campus GR-15773, Athens, Greece
e-mails:manolis72003@hotmail.cormavtri@central.ntua.grkoum@central.ntua.gr

Keywords:. Distortion, Non-uniform torsion, multicell, thinalled, box sections

1.SUMMARY

A beam element is proposed that takes into acdabeneffects of non-uniform torsion and
distortion of thin walled closed cross sectionstsianal warping and distortion violate the
assumption that plane sections remain plane agéormhation. To account for these
phenomena the displacement field is extended hypidgfthree new degrees of freedom at
each end. The shape functions for the interpolatibthe new degrees of freedom are
derived by analytically solving the homogeneoudedéntial equations of non uniform
torsion and distortion. Consequently a (18*18)séis matrix is formulated, together with
equivalent nodal actions for distributed loadingeTeffects of distortion and non uniform
torsion cannot be disregarded especially for dteédige box girder sections because they
introduce significant stresses in both the longitatland transverse directions. Examples
are presented which demonstrate the efficiencyhefgroposed element. Moreover, the
effects of spacing of intermediate diaphragms iangred and the minimum number of
diaphragms is determined that limit the additiosiesses below the one tenth of max
bending stresses; a threshold that Eurocode 3figseas the limit to use classical beam
theory in bridge analysis.

2. INTRODUCTION

Bridge construction is one of the most challengagd demanding tasks of Civil
Engineering. The structural systems used to spacifgplengths vary from simple trusses
and beams to cable stayed and suspension bridge&s[$he result of intensive loads in
vertical as well as in horizontal directions duewimd and earthquake loads the stresses
and displacements developed in bridges are sulmtaltore sophisticated theories are
needed [3],[4] capable to express additional pheam@nnamely non uniform torsion and
distortion [1] of the cross section, providing tappropriate relations to evaluate the
stresses and warping effects. Additional normal simelaring stresses are developed that
may lead to states of stress exceeding the awailablength resulting into failure.
Distortion is more pronounced in steel box girdsestions [2] where the thickness is
relatively small as compared to that of concretgiges.

Several design codes, as for example Eurocodectitelithat in order to use the classical

theory of beams and neglect these phenomena, omsé engure that normal stresses
induced by torsion and distortion should not excaesnall portion of the flexural normal
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stresses. In this work the minimum number of regidiaphragms needed to avoid the
detailed calculation of stresses and rely on tlsulte of classical theory of beams is
determined in tabular form as a function of all thime parameters that control the

problem.
3. RECTANGULAR BOX SECTIONS

In Figure 1, a typical box section of a rectangutdwape is presented with all its
geometrical parameters, where the points C, S amdelthe Centroid, Shear center and
Distortional center of the section respectively.
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Figure 1. Typical Rectangular Box section

4. TORSIONAL WARPING

St Venant's torsion is defined accurately for ciacusections and sections prescribed in
circle. Beams with a general cross section warp tdumrsional loads. This means that
they deform out of the plane of the cross sectiofating the assumption of classical beam
theory according to which should remain plane.

Figure 2 Generalized Section under Torsion
0(z
u(zs)= o)(s)L = ()0’ (1)
0z
wheren(s) is the warping function defined as:
s s a ~
o=-|rds+|—=ds, g =Gbq, (2)
el
and t=the distance from the torsional center S andthdasshear flow in the cross section.

When the axial displacement is free then the beam is under pure torsion wiéinpmg,
while when restrained non uniform torsion develops.
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5. NON-UNIFORM TORSION

Restraining the axial displacement due to warpasuits into a torsional warping normal
elastic stresses,, expressed as:

c,=Ee, = E@ (3)
0z
This induces secondary shear stresses that stitesgquilibrium condition:
©u, T _ (4)
0z 0s
These shear stresses result in a secondary sbeard|, =t,t, which in turn induces a

secondary torsional moment, also known as Waghassonal moment .

d’e de
T,=|qrds=-E— |o’tds=-El ,— 5
v=a | e (5)
where the torsional warping constapid defined as:
1, = [o’tds (6)
A
Introducing the torsional bimoment, or torsionakpiag moment Bor M,, as:
d’e
M,=El — 7
=Bl )
equation (3) can be rewritten as:
d’e M
6, =Bo—="0 8
v dz? |1, ®)
Finally the differential equation of non unifornrsgn is expressed as:
d’e do
El,—-CGK,—=-T=—(T,+T, 9
" dz? tdz (T.+T.) ®)

where T is the sum of the St Venant's torsiemid Wagner’s torsion,I
6. DISTORTION

The eccentric loading of Figure 3 is decomposed tiné symmetric loading of Figure 3(a)
and the anti symmetric loading of Figure 3(b).

lmrz’Zb

Figure 3. Decomposing the load into symmetric amdsymmetric loading
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The symmetric loading results in bending of thenbewhile the anti symmetric loading
could be further analyzed as in Figure 3(c) andufeig3(d). Figure 3(c) shows the shear
stresses invoked by non uniform torsion while Feg8fd) shows stresses developed so that
state (b) is equal to the sum of states (c) and {dg¢ stresses shown in Figure 3 (d)
correspond to distortion. Distortion deforms thex bgection and results in angular
distortion® of the corners of the box. This distortional an@t@ure 4.) is defined by the
geometrical relation:

(10)

o
X—T.
so°-@ Y'| soo+ eja

Figure 4. Distortion of the Rectangular Box section

Deformation of the box sections results in distoréll warping:

u(z,s)= . o, (), WheremD:—jrd(s)ds (11)

and g(s) is the distance from the distortional center D.
With respect to non uniform torsion, restrain o tixial displacement leads to distortional
normal stresses,,, given as:
ou _0°0
6, =Ee=E—=E=—0 12
Dw 82 azz D ( )
Similarly, to equilibrate these axial stressesatiginal shear stresses, are developed as
determined by:
bw _ 13
0z os (13)
Moreover, with respect to non uniform torsion thstattional bimoment B or Mp,, is
defined as:
d’®
Dw — El Dw? (14)
wherel, is the distortional warping constant defined g = ImédA
A

M

Therefore, the normal stresses can now be rewaien
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M
Cpy = l—DW(DD (15)
Dw

In addition the shear stresses result in a distoatishear flow:

Uow = Toul (16)
and the distortional momentJ can be given as:
oM 0’0

T, =—2=—Fl_  — 17
Dw 62 Dw 823 ( )

As the box section deforms due to distorttdnit behaves like a plane frame of unit width
with its members acting as beams under bendingsiitieess this frame develops against
distortion can be defined ds,,:
For a single cell box section is expressed as:
K, = 24El,,,
ah

(18)

where,
2b/h+30,+1,)/1, t3 t3 t?

u

(I, +1)/ 1, +(6h/D)(I, 1, /12)" * 12(0-v?)’ "= avy T av?

a, =1+

The differential equation for distortion is detenmd as follows:

d‘e m;
Bl + Ko = (19)
4
d (?+4a;‘®: L ™ ith a2=4h (20)
dz El, 2 =

which is similar to the equation of a beam on @dstundation.
7.MULTICELL BEAM ELEMENT

The classical beam theory does not account for umaform torsion and distortional
effects. Therefore, an one-dimensional beam thisoigrmulated for multicell thin-walled
elements based on the above theory having 9 degfde=edom at each end. Obtaining a
such type of element, torsional warping and digiortan be considered.

Having 9 degrees at each end the element hasl @tdia degrees of freedom. The vectors

of end displacementgd} and nodal force$f} are defined as:

o} se
e

Figure 5 Nodal Forces
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{d}" ={u, vy Wy 6, Vl —W,

0i i

~0/©, —@ U, v, W, 0, V, —W, -0 0, -0}(21)

i 0 7j 0j
() ={N,E,ETM MM EMLN,EFTMMN JM,} (22
where:
'I't=TS+TW (23)
8. GOVERNING DIFFERENTIAL EQUATIONS

The differential equations that describe the pnobdee the following:

-EAU) =q, (24)
d* W,

dv, ,

El, dzf =0g,—m, (26)
d‘o )

EI d o4 GK 0" = rnf + n’tv + ysqx - ysrr(/ (27)

d‘e 1
Blo, e + Ko © =5 M, (28)

where u, v, W, are the axial, transverse and vertical componehtiisplacement of the

centroid. Using the above equations and appropsiz@e functions, determined using the
analytical expressions of the homogeneous solutitims (18x18) stiffness matrix is
derived. Bending stiffness coefficients of the &IBment are the same as in classical beam
theory with the exception of the torsional degreédreedom. The new torsional and
distortional degrees of freedom are calculatedguapropriate relationships. In addition,
bending, torsional and distortional entries areouipted and the stiffness coefficients are
determined using closed form expressions.

9. Eurocode 3, Part 2

Eurocode 3 specifications for non uniform torsiord alistortion are listed in paragraph
6.2.1. More specifically they require:

(1) For members subject to torsion, both torsional and distortional effects should be taken
into account.

(2) Where the effects of transverse stiffness in the cross section or of diaphragms that are
built in to reduce distortional deformations shall be determined, the combined effect of
bending, torsion and distortion may be analyzed with an appropriate elastic model for the
members.

(3) Distortional effects may be disregarded in the member where due to the transverse
bending stiffness in the cross section and/or diaphragm action, the effects from distortion
do not exceed 10% of the bending effects.

Therefore normal stresses induced by torsionaldgstdrtional warping must be limited to

10% of bending normal stresses, otherwise thesagphena can not be disregarded. In
other words if this ratio is exceeded, analysis legipg classical beam theory is not
considered accurate.
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10. THE USE OF DIAPHRAGM S

Consider a beam of length L subjected to a vertio#brm load g and a uniform torsional
an distortional load mmy respectively. Torsion is considered fixed at bettds. This
beam has diaphragms only at its ends.

mt,nd2
YW PPN W) b
0 0 B > e S

Figure 6. Simply Supported Beam without and wittetmediate Diaphragm

The boundary conditions are¢ =0, w'=0, 6,=0, ©,= 0 i= 1z If a diaphragm is
placed in the middle of the span the boundary d¢mmd for bending or torsion will not be
affected. Thus the induced normal stresses ren@nsame. For distortional boundary
conditions, distortional warping at the midpoint tbe span remains free. However the
diaphragm restrains the distorti@nof the midspan and since the transverse stiffobtse
diaphragm is significantly higher than the one loé beam® can be considered fully
fixed. Restraining distortio® in an interior point results to decrease of theximam
values of distortional normal stress. Further ntbiee use of 2 interior diaphragms at L/3
leads to further increase of distortional normaksies. By increasing the number of
interior diaphragms distortional normal stresseduce, while normal stresses due to
torsion and bending remain the same. Thereforerdtie of bending to torsional and
distortional normal stresses reduces too. Consélgudor every box girder a minimum
number of diaphragms can be determined so thaatleis under 10% and classical beam
elements can be used in the analysis providingtsethat may differ less than 10% from
the more accurate analysis.

11. NUMERICAL EXAMPLES

Eurocode 1 specifies the number of lanes, theirttwighd traffic loads for various
categories of roads. Moving loads are placed inag that produces maximum normal
bending stresses. In addition, eccentric loadplaeed in the most unfavorable position to
produce maximum torsional and distorsional stres€®msider a cross section with
b=10m, c=4m, h=3m£0.06m, £0.06m, =0.05m, {=0.07m. The material of the section
is steel, E=200 GPay=0.3. For this section the required number of diagms is
determined for lengths varying from 20 to 90 m.
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Figure 7. Variation of Number of Diaphragms withyKearameters

Notice that the required number of diaphragms redlas the length increases. Torsional
and distortional normal stresses increase as tiggHencreases, however at a slower rate
than the ones induced by bending. Therefore thélentihhe span the greater the number of
the diaphragms, despite of what one would expectebsing the thickness of different
parts of the box section doesn’t signify a singéndl for the number of diaphragms. The
sum of distortional and torsional normal stresseiices more rapidly than those induced
by bending as the height of the box section in@gaBecause the loads are defined in
traffic lanes bending and torsional and distortionaiform loads will increase as the
length of the box increases. Increase of the lemdtihe beam leads to an increased
number of required diaphragms and this is antieigpais the lever arm of the eccentric load
increases. Similar behaviour is observed for thereimse of the cantilever length. It is
apparent that all nine parameters affect the nunabediaphragms required. And the
maximum influence of these parameters depends @rvdlues of the other parameters,
with the exception of the length which when incezhkeads to a decrease of the number of

. . / K : .
diaphragms. In the literature the parame@r=4ﬁ Is used to describe the
dw

problem. However by giving 10 different values fr@®1 to 0.014 for, t, t, and ¢ one
gets the last diagram of Figure 7. For section$ whe same value o4,, but different

values of {§, t, ty, tthe required number of diaphragms may differ sigaiftly. This
shows thata, cannot be considered as the sole parameter thaimdees the number of

diaphragms.
12. CONCLUSIONS

A general thin-walled closed section beam elemsrfoimulated that accounts for non
uniform torsion and distortion of the cross-sectibhe element is exact in the sense that
satisfies the governing equations and as suchcigrate for every length. The equivalent
nodal loads determined for different types of distted loading are developed. Based on
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this element the minimum number of diaphragms ng¢ddereduce stresses due to non
uniform torsion and distortion below the threshofdthe 1/10 of the bending stresses is
determined and the variation with respect of tlyhteparameters that affect the problem is
demonstrated. As shown from the examples the mimnmumber of diaphragms is a
function of all the eight parameters of the prohlenhhis is why a practical rule for
diaphragm spacing cannot be issued.

Moreover, the use of fewer diaphragms, than thes eequired, signifies that the analysis
doesn’t comply with the demands of the Eurocodév&n more, torsional and distortional
normal stress, that are developed in the sectiom,ignored although they consist a
significant portion of the ones induced by bendimgsome cases, with not proper use of
diaphragms, the distortional stresses have maximmtaes significantly bigger than
bending normal stresses. Finally, there are alsesahere in order to keep the ratio of
stresses under 10 % the distance between diaphriagmeemely small and the design is
not feasible. In these cases either the crossosestiould be changed or one should
perform an exact analysis taking into account ¢orsind distortion.

Therefore it is strongly recommended that one fedldhe required number of diaphragms
proposed after exact analysis, as in this work. fi@mum number of diaphragms for

each case of girder described by the values H,, I, t,, ¢, t, L can be acquired by the

nine dimensioned matrix stored in the internet page:\\users.ntua.gr/vkoum
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IIEPIAHYH

O1 povoxvyekes Kot ToAVKOWeELEG KIPOTIOEDELG O10TOUES VTOPUAAOUEVEG GE aveEUTOOIGTN
oTPEYT OVOTTTOGGOVV GTPEPAMOT LE ATOTEAEGUO. TNV OVATTUEN AVOLOIOLOPPNG GTPEYNS
KOl OLOTPOPNG ONA. TNV TAPAUOPPMOOT TNG SOTOUNG 0TO €Mimedd TG Tov givol £vtovo
Wwitepa oTN TEPITTOON AETTOTOLYOV HETOAMKOV S0 TOUDV. AvTticToryo otov eumodiletal
N o1péPfrhoomn avanticcovtal ophig TAGES KATA TOV SUnK” dEova Tov oTotyeion, aAld
Kot Ol0TUNTIKEG TAOELS Y10 TV OTOKATAGTOGT] TNG 00PPOTIG. AVTIKEILEVO TG EPYACIOG
amotehel M avanTvEn evog pafdmtod oToryeiov dokov mov eumAovtilel To GTOLKElo TNG
d0KOV 6T0 Y®PO HE TPOcheToVg Pabode elevbepiag dote Vo TEPIMAPEL TNV GVLUTEPLPOPE.
NG OVOUOIOHOPPNG OTPEYNS Kol NG doTpoPng e oatopns. To otoryeio avtd
avamtOooeTol pe Paon v Osopie TOV TETEPUCUEVOV OTOWXEI®V E10GYOVTOG MG
GUVOPTNOELS CYNLOTOG TIG aKPPEIC AVOES TOV OLOYEVOV KOTACTOTIKGOV EEIGOCEMY TOV
wpofAnuatog. To mapayouevo pe Baon v apyn TOV SVVUTOV £PYOV UNTPOO SVGKAUYING
dwotdoewv 18x18 ka1 o1 TPoKITTOVGES 1G0OVVALES akpaieg dpdoelg, Yo TG GuvnBelg
KOTAVEUNUEVEG QOPTIoELS, €ivar akpiPeic katd TV €vvola NG UNTPOIKNG ZTOTIKNG Kol
EMTPETOVV TNV YPNON OTOLKEI®V 010VONTOTE UNKOVS. O1 d14POPOoLl KOVOVIGLOT HETAED TmV
omoiwv ka1 0 Evpok®ddikag 3 EMTPETOVY TNV ATAOTOIMNTIKTY XPHOT OTOLXEIV doKOV UdVO
o0tav o1 0phEg TAoelg AOY® TG AVOLOIOLOPPNG GTPEYNS KOl TNG SILCTPOPTG TNG OLLTOUNG
dev Eemepvolv €va PIKPO TOGOGTO TOV KAUTTIK®OV TAGE®V, cuVHOmS ¢ TaEemc Tov 10%.
‘Etol katd v avdivon, 1 0o tpénet va ypnotpomombei 1o mpotetvopevo otoyeio kot ot
10000VaEG akpaieg dpdcelc tov 1 Bo mpémer vo mpoPrepbel 1 ypnom evolduEcwOV
Swepaypdtov mov teplopilovv Tig TPOHGOETEG TAGELS TOV PUIVOUEVOV AVTAOV GTO OPLOL TOV
opiovv ot kavovicpoi. 'Etor yio dedopévn AemtoToyn SloToun Kol HUNAKOG OVOIYHOTOg
TPOKVTTEL, PEGM NG aKPPOVG avalvong pe to. oTolyelo TOAVKOWEANS OTOUNG, £Vag
eMd1oTOC aptBpdc amottovpevey dwepayudtov. O aptBpog avtdc eCaptdtal omd oKT®
TOPAUETPOVG KOl G €k TOVTOL Kabopiletal 08 MVAKOTOINUEVY LOPPT. XTNV epyocio
mapovotdletar n  petafolny Tov  €AdyloTOL  aplOUOD  OTOUTOOUEVOV  EVOLIUECHOV
Swoepaypudtov pe Pdon v UHETOPOAN TV KOPLOV TAPAUETPOV, HE TS VTOAOUTEG
Bewpovpevec otabepés, o1 de TANPELS TIVAKEC TAPEXOVTOL OTNV NAEKTPOVIKT d1evBvuvon:
http:\\users.ntua.gr/vkoum.
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