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1.SUMMARY 

A beam element is proposed that takes into account the effects of non-uniform torsion and 
distortion of thin walled closed cross sections. Torsional warping and distortion violate the 
assumption that plane sections remain plane after deformation. To account for these 
phenomena the displacement field is extended by defining three new degrees of freedom at 
each end. The shape functions for the interpolation of the new degrees of freedom are 
derived by analytically solving the homogeneous differential equations of non uniform 
torsion and distortion. Consequently a (18*18) stiffness matrix is formulated, together with 
equivalent nodal actions for distributed loading. The effects of distortion and non uniform 
torsion cannot be disregarded especially for steel bridge box girder sections because they 
introduce significant stresses in both the longitudinal and transverse directions. Examples 
are presented which demonstrate the efficiency of the proposed element. Moreover, the 
effects of spacing of intermediate diaphragms is examined and the minimum number of 
diaphragms is determined that limit the additional stresses below the one tenth of max 
bending stresses; a threshold that Eurocode 3 specifies as the limit to use classical beam 
theory in bridge analysis. 
 
2. INTRODUCTION 
 
Bridge construction is one of the most challenging and demanding tasks of Civil 
Engineering. The structural systems used to span specific lengths vary from simple trusses 
and beams to cable stayed and suspension bridges [5]. As the result of intensive loads in 
vertical as well as in horizontal directions due to wind and earthquake loads the stresses 
and displacements developed in bridges are substantial. More sophisticated theories are 
needed [3],[4] capable to express additional phenomena, namely non uniform torsion and 
distortion [1] of the cross section, providing the appropriate relations to evaluate the 
stresses and warping effects. Additional normal and shearing stresses are developed that 
may lead to states of stress exceeding the available strength resulting into failure. 
Distortion is more pronounced in steel box girders sections [2] where the thickness is 
relatively small as compared to that of concrete sections.  
 
Several design codes, as for example Eurocode 3, dictate that in order to use the classical 
theory of beams and neglect these phenomena, one must ensure that normal stresses 
induced by torsion and distortion should not exceed a small portion of the flexural normal 
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stresses. In this work the minimum number of required diaphragms needed to avoid the 
detailed calculation of stresses and rely on the results of classical theory of beams is 
determined in tabular form as a function of all the nine parameters that control the 
problem.  
 
3. RECTANGULAR BOX SECTIONS 
 
In Figure 1, a typical box section of a rectangular shape is presented with all its 
geometrical parameters, where the points C, S and D are the Centroid, Shear center and 
Distortional center of the section respectively. 
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Figure 1. Typical Rectangular Box section 
 
4. TORSIONAL WARPING 
 
St Venant’s torsion is defined accurately for circular sections and sections prescribed in 
circle. Beams with a general cross section warp due to torsional loads. This means that 
they deform out of the plane of the cross section violating the assumption of classical beam 
theory according to which should remain plane.  
 
 

 

 

 

 

Figure 2 Generalized Section under Torsion  
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where ω(s) is the warping function defined as:   
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and rs=the distance from the torsional center S and q is the shear flow in the cross section. 
When the axial displacement u  is free then the beam is under pure torsion with warping, 
while when restrained non uniform torsion develops. 
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5. NON-UNIFORM TORSION 
 
Restraining the axial displacement due to warping results into a torsional warping normal 
elastic stresses wσ expressed as: 

 w z

u
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∂
σ = Εε =
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 (3) 

This induces secondary shear stresses that satisfy the equilibrium condition:  
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These shear stresses result in a secondary shear flow: w wq t= τ , which in turn induces a 

secondary torsional moment, also known as Wagner’s torsional moment Tw.  
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where the torsional warping constant Iw is defined as:  
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w
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Introducing the torsional bimoment, or torsional warping moment Bt or Mw  as: 
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equation (3) can be rewritten as:   
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Finally the differential equation of non uniform torsion is expressed as:  
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3
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where T is the sum of the St Venant’s torsion Ts and Wagner’s torsion Tw. 
 
6. DISTORTION 
 
The eccentric loading of Figure 3 is decomposed into the symmetric loading of Figure 3(a) 
and the anti symmetric loading of Figure 3(b).  
 

 

Figure 3. Decomposing the load into symmetric and anti symmetric loading 
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The symmetric loading results in bending of the beam, while the anti symmetric loading 
could be further analyzed as in Figure 3(c) and Figure 3(d). Figure 3(c) shows the shear 
stresses invoked by non uniform torsion while Figure 3(d) shows stresses developed so that 
state (b) is equal to the sum of states (c) and (d). The stresses shown in Figure 3 (d) 
correspond to distortion. Distortion deforms the box section and results in angular 
distortion Θ of the corners of the box. This distortional angle (Figure 4.) is defined by the 
geometrical relation: 

 0-l u iv v w w

h b

−
Θ = +  (10) 

 

Figure 4. Distortion of the Rectangular Box section 
 
Deformation of the box sections results in distortional warping: 
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and rd(s) is the distance from the distortional center D. 
With respect to non uniform torsion, restrain of the axial displacement leads to distortional 
normal stresses Dwσ given as: 
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Similarly, to equilibrate these axial stresses distortional shear stresses τDw are developed as 
determined by:  

 0Dw Dw

z s
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Moreover, with respect to non uniform torsion the distortional bimoment Bd or MDw is 
defined as:  
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where DwI  is the distortional warping constant defined as: 2
Dw D

A

I dA= ω∫  

Therefore, the normal stresses can now be rewritten as: 
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 Dw
Dw D

Dw

M

I
σ = ω  (15) 

In addition the shear stresses result in a distortional shear flow:  
 Dw Dwq t= τ  (16) 

and the distortional moment TDw can be given as: 
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As the box section deforms due to distortion Θ, it behaves like a plane frame of unit width 
with its members acting as beams under bending. The stiffness this frame develops against 
distortion can be defined as DwK : 

For a single cell box section is expressed as: 
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The differential equation for distortion is determined as follows: 
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which is similar to the equation of a beam on elastic foundation. 
 
7. MULTICELL BEAM ELEMENT 
 
The classical beam theory does not account for non uniform torsion and distortional 
effects. Therefore, an one-dimensional beam theory is formulated for multicell thin-walled 
elements based on the above theory having 9 degrees of freedom at each end. Obtaining a 
such type of element, torsional warping and distortion can be considered. 
Having 9 degrees at each end the element has a total of 18 degrees of freedom. The vectors 
of end displacements { }d  and nodal forces { }f  are defined as: 

 
 

Figure 5 Nodal Forces 
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where:   
 t s wT T T= +  (23) 

8. GOVERNING DIFFERENTIAL EQUATIONS 
 
The differential equations that describe the problem are the following: 
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where 0, 0, 0u v w  are the axial, transverse and vertical components of displacement of the 

centroid. Using the above equations and appropriate shape functions, determined using the 
analytical expressions of the homogeneous solutions, the (18x18) stiffness matrix is 
derived. Bending stiffness coefficients of the 3-D element are the same as in classical beam 
theory with the exception of the torsional degrees of freedom. The new torsional and 
distortional degrees of freedom are calculated using appropriate relationships. In addition, 
bending, torsional and distortional entries are uncoupled and the stiffness coefficients are 
determined using closed form expressions. 

9. Eurocode 3, Part 2 
 
Eurocode 3 specifications for non uniform torsion and distortion are listed in paragraph 
6.2.1. More specifically they require: 
(1) For members subject to torsion, both torsional and distortional effects should be taken 
into account. 
(2) Where the effects of transverse stiffness in the cross section or of diaphragms that are 
built in to reduce distortional deformations shall be determined, the combined effect of 
bending, torsion and distortion may be analyzed with an appropriate elastic model for the 
members. 
(3) Distortional effects may be disregarded in the member where due to the transverse 
bending stiffness in the cross section and/or diaphragm action, the effects from distortion 
do not exceed 10% of the bending effects. 
 
Therefore normal stresses induced by torsional and distortional warping must be limited to 
10% of bending normal stresses, otherwise these phenomena can not be disregarded. In 
other words if this ratio is exceeded, analysis employing classical beam theory is not 
considered accurate. 
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10. THE USE OF DIAPHRAGMS 
 
Consider a beam of length L subjected to a vertical uniform load q and a uniform torsional 
an distortional load mt, md respectively. Torsion is considered fixed at both ends. This 
beam has diaphragms only at its ends. 

q

mt,md/2

L

md/2

Θ=0
Θ' free

Θ=0
Θ' free

Θ=0
Θ' free

L/2 L/2

 
Figure 6. Simply Supported Beam without and with Intermediate Diaphragm 

The boundary conditions are: 0, 0, 0, 0 1,2i i i iw w i′′= = θ = Θ = = . If a diaphragm is 

placed in the middle of the span the boundary conditions for bending or torsion  will not be 
affected. Thus the induced normal stresses remain the same. For distortional boundary 
conditions, distortional warping at the midpoint of the span remains free. However the 
diaphragm restrains the distortion Θ of the midspan and since the transverse stiffness of the 
diaphragm is significantly higher than the one of the beam, Θ can be considered fully 
fixed. Restraining distortion Θ in an interior point results to decrease of the maximum 
values of distortional normal stress. Further more the use of 2 interior diaphragms at L/3 
leads to further increase of distortional normal stresses. By increasing the number of 
interior diaphragms distortional normal stresses reduce, while normal stresses due to 
torsion and bending remain the same. Therefore, the ratio of bending to torsional and 
distortional normal stresses reduces too. Consequently, for every box girder a minimum 
number of diaphragms can be determined so that the ratio is under 10% and classical beam 
elements can be used in the analysis providing results that may differ less than 10% from 
the more accurate analysis. 

11. NUMERICAL EXAMPLES 
 
Eurocode 1 specifies the number of lanes, their width and traffic loads for various 
categories of roads. Moving loads are placed in a way that produces maximum normal 
bending stresses. In addition, eccentric loads are placed in the most unfavorable position to 
produce maximum torsional and distorsional stresses. Consider a cross section with 
b=10m, c=4m, h=3m, tu=0.06m, tl=0.06m, tc=0.05m, tw=0.07m. The material of the section 
is steel, E=200 GPa, ν=0.3. For this section the required number of diaphragms is 
determined for lengths varying from 20 to 90 m. 
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Figure 7. Variation of Number of Diaphragms with Key Parameters  

 
Notice that the required number of diaphragms reduces as the length increases. Torsional 
and distortional normal stresses increase as the length increases, however at a slower rate 
than the ones induced by bending. Therefore the smaller the span the greater the number of 
the diaphragms, despite of what one would expect. Increasing the thickness of different 
parts of the box section doesn’t signify a single trend for the number of diaphragms. The 
sum of distortional and torsional normal stresses reduces more rapidly than those induced 
by bending as the height of the box section increases. Because the loads are defined in 
traffic lanes bending and torsional and distortional uniform loads will increase as the 
length of the box increases. Increase of the length of the beam leads to an increased 
number of required diaphragms and this is anticipated as the lever arm of the eccentric load 
increases. Similar behaviour is observed for the increase of the cantilever length. It is 
apparent that all nine parameters affect the number of diaphragms required. And the 
maximum influence of these parameters depends on the values of the other parameters, 
with the exception of the length which when increased leads to a decrease of the number of 

diaphragms. In the literature the parameter 42 4* *
Dw

dw

K
a

E I
=  is used to describe the 

problem. However by giving 10 different values from 0.01 to 0.014 for tu, tl, tw and tc one 
gets the last diagram of Figure 7. For sections with the same value of 2a , but different 

values of tu, tl, tw, tcthe required number of diaphragms may differ significantly. This 
shows that 2a  cannot be considered as the sole parameter that determines the number of 

diaphragms. 
 
12. CONCLUSIONS 
 
A general thin-walled closed section beam element is formulated that accounts for non 
uniform torsion and distortion of the cross-section. The element is exact in the sense that 
satisfies the governing equations and as such is accurate for every length. The equivalent 
nodal loads determined for different types of distributed loading are developed. Based on 
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this element the minimum number of diaphragms needed to reduce stresses due to non 
uniform torsion and distortion below the threshold of the 1/10 of the bending stresses is 
determined and the variation with respect of the eight parameters that affect the problem is 
demonstrated. As shown from the examples the minimum number of diaphragms is a 
function of all the eight parameters of the problem. This is why a practical rule for 
diaphragm spacing cannot be issued.  
 
Moreover, the use of fewer diaphragms, than the ones required, signifies that the analysis 
doesn’t comply with the demands of the Eurocode 3. Even more, torsional and distortional 
normal stress, that are developed in the section, are ignored although they consist a 
significant portion of the ones induced by bending. In some cases, with not proper use of 
diaphragms, the distortional stresses have maximum values significantly bigger than 
bending normal stresses. Finally, there are also cases where in order to keep the ratio of 
stresses under 10 % the distance between diaphragms is extremely small and the design is 
not feasible. In these cases either the cross section should be changed or one should 
perform an exact analysis taking into account torsion and distortion. 
 
Therefore it is strongly recommended that one follows the required number of diaphragms 
proposed after exact analysis, as in this work. The minimum number of diaphragms for 
each case of girder described by the values H, b, tw, tl, tu, c, tc, L can be acquired by the 
nine dimensioned matrix stored in the internet page: http:\\users.ntua.gr/vkoum 
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ΠΕΡΙΛΗΨΗ 
 
Οι µονοκύψελες και πολυκύψελες κιβωτιοειδείς διατοµές υποβαλλόµενες σε ανεµπόδιστη 
στρέψη αναπτύσσουν στρέβλωση µε αποτέλεσµα την ανάπτυξη ανοµοιόµορφης στρέψης 
και διαστροφής δηλ. την παραµόρφωση της διατοµής στο επίπεδό της που είναι έντονο 
ιδιαίτερα στη περίπτωση λεπτότοιχων µεταλλικών διατοµών. Αντίστοιχα όταν εµποδίζεται  
η στρέβλωση αναπτύσσονται ορθές τάσεις κατά τον διαµήκη άξονα του στοιχείου, αλλά 
και διατµητικές τάσεις για την αποκατάσταση της ισορροπίας. Αντικείµενο της εργασίας 
αποτελεί η ανάπτυξη ενός ραβδωτού στοιχείου δοκού που εµπλουτίζει το στοιχείο της 
δοκού στο χώρο µε πρόσθετους βαθµούς ελευθερίας ώστε να περιλάβει την συµπεριφορά 
της ανοµοιόµορφης στρέψης και της διαστροφής της διατοµής. Το στοιχείο αυτό 
αναπτύσσεται µε βάση την θεωρία των πεπερασµένων στοιχείων εισάγοντας ως 
συναρτήσεις σχήµατος τις ακριβείς λύσεις των οµογενών καταστατικών εξισώσεων του 
προβλήµατος. Το παραγόµενο µε βάση την αρχή των δυνατών έργων µητρώο δυσκαµψίας 
διαστάσεων 18x18 και οι προκύπτουσες ισοδύναµες ακραίες δράσεις, για τις συνήθεις 
κατανεµηµένες φορτίσεις, είναι ακριβείς κατά την έννοια της µητρωϊκής Στατικής και 
επιτρέπουν την χρήση στοιχείων οιουδήποτε µήκους.  Οι διάφοροι κανονισµοί µεταξύ των 
οποίων και ο Ευρωκώδικας 3 επιτρέπουν  την απλοποιητική χρήση στοιχείων δοκού µόνο 
όταν οι ορθές τάσεις λόγω της ανοµοιόµορφης στρέψης και της διαστροφής της διατοµής 
δεν ξεπερνούν ένα µικρό ποσοστό των καµπτικών τάσεων, συνήθως της τάξεως του 10%. 
Έτσι κατά την ανάλυση, ή θα πρέπει να χρησιµοποιηθεί το προτεινόµενο στοιχείο και οι 
ισοδύναµες ακραίες δράσεις του ή θα πρέπει να προβλεφθεί η χρήση ενδιάµεσων 
διαφραγµάτων που περιορίζουν τις πρόσθετες τάσεις των φαινοµένων αυτών στα όρια που 
ορίζουν οι κανονισµοί. Έτσι για δεδοµένη λεπτότοιχη διατοµή και µήκος ανοίγµατος  
προκύπτει, µέσω της ακριβούς ανάλυσης µε τα στοιχεία πολυκύψελης διατοµής, ένας 
ελάχιστος αριθµός απαιτούµενων διαφραγµάτων. Ο αριθµός αυτός εξαρτάται από οκτώ 
παραµέτρους και ως εκ τούτου καθορίζεται σε πινακοποιηµένη µορφή. Στην εργασία 
παρουσιάζεται η µεταβολή του ελάχιστου αριθµού απαιτούµενων ενδιάµεσων 
διαφραγµάτων µε βάση την µεταβολή των κύριων παραµέτρων, µε τις υπόλοιπες 
θεωρούµενες σταθερές, οι δε πλήρεις πίνακες παρέχονται στην ηλεκτρονική διεύθυνση: 
http:\\users.ntua.gr/vkoum. 


