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1. SUMMARY

This paper presents a simple numerical procedurthéostatic analysis of linearly elastic
metal structures, containing cable-like memberse procedure is based on a version of
the direct Stiffness Method of Structural Analyarsl on a relative Equivalence Principle,
proposed by G. Nitsiotas and holding for problenith winilateral constraints. The Finite
Element Method is used and a linear complementgritplem with a reduced number of
unknowns is finally solved.

2. INTRODUCTION

Structures containing cable-like members appeay \dten in the praxis of Civil
Engineering, see e.g. recently in Greece the staaitures in the Athens Olympic Campus
(Olympic Games 2004) or the stay-cable systemeRion-Antirion bridge [1,2].

The problem of such structures containing cable-tikembers has its origin in the design
of some metal structures, such as bridge trusgbscounters or lattice struts with counter-
diagonals. As well-known, the cable-like membens oadertake tension but buckle and
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become slack and structurally ineffective when ecigd to a sufficiently large
compressive force. Thus the governing conditioke tn equality as well as an inequality
form. So, the problem of structures containinglasva cable-like members belongs to the
so-called Inequality Problems of Mechanics, asrtigeverning conditions are of both,
equality and inequality type [3-6]. It is a high mbnear problem, requiring special
treatment techniques [12-14].

In the early analysis attempts, many of these &iras have been analyzed by a trial-and-
error technique requiring repeated analysis ofdtinectures for various loading systems.
However, it should be noted that convergence tocthreect solution by such iterative
procedures is not always guaranteed. A more rgatigtatment of the problem has been
obtained by quadratic programming methods [3-4].rtihar, the variational or
hemivariational inequality concept has been used tfee rigorous mathematical
investigation of the problem [5,9]. The early nuroar realizations of these approaches
were based mainly upon the principle of minimum pementary energy [3,6]. Thus, an
equivalence principle for the analysis of staticalhdetermined structures with unilateral
constraints has been proven by G. Nitsiotas [3].

On the other hand, most of the available computegnams are based on the Displacement
Method of structural Analysis. Consequently it seemore advantageous to combine the
afore-mentioned equivalence principle with the Bispment method to obtain a simple
numerical procedure for the analysis of such stimest

The aim of this paper is to deal with the developtnad a simple numerical procedure for
the static analysis of linearly elastic metal sfnoes containing cable-like members by
using a version of the direct Stiffness (Displacethdethod of Structural Analysis. The
present procedure is based on the Finite Elementhddeand the Equivalence Principle,
proposed by G. Nitsiotas in [3]. Using this prifleipthe analysis of such structures can be
reduced to a Linear Complementarity Problem (LGH#)ich can be solved by various
effective quadratic programming algorithms. A nuicer example shows the direct
applicability on the computer and the effectivenafsthe procedure presented herein.

3. METHOD OF ANALYSIS
3.1 TheProblem Formulation

A linearly elastic metal structure containing N leallkke members is considered. The
structure is discretized according to the Finiteni#nt Method. For the cables, pin-jointed
bar elements with unilateral behavior are useds Tiilateral behavior for the i-th cable-
element (i=1,...,N) is expressed by the followmretations [3,10]:

& = hi.§+ & -V (1)

s >0, v>0, sv= 0. (2a,b,c)

Here e, R, S, @0 and y denote the strain (elongation), natural flexigibnstant, stress
(tension), initial strain and slackness, respebtiierom (1) it is clear that the slackness vi
can be considered as an unknown initial strain widonstitutes a reversible negative

elongation [3]. Further, relations (2) express thiftier a non-negative stress-tension or a
non- negative slackness exists on any cable.
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For the remaining structure (besides the cablég),usual linearly elastic finite element
models, which exhibit a bilateral behaviour, aredis

3.2 TheEquivalence Principle and Stiffness Approach

Now the Equivalence Principle, proposed by G. Mits in [3], is applied for the whole
structure. According to this principle, the struetwnder consideration behaves statically
as an equivalent, linearly elastic structure, urtiercondition that in each cable-element
either a non-negative stress or a fictitious, umkmonon- negative slackness appears-see
rels (2). Thus, collecting in (Nx1) vectdarsandv the stress and slackness behaviour of all
the N cable-elements, corresponding, the followlimigear Complementarity Conditions
hold:

t>0, v>0, ttv= 0. (Bar)

Further, following the Stiffness (Displacement) Ked of Structural Analysis, we
consider the cable-element as solidified rods aachigsume that the so-modified structure
is a statically stable one with bilateral rod-elesis. So, the tension vector t is
decomposed as follows [10]:

t=C.v +1 4)

Heret, is the stress vector of the solidified cable-eletsienow acting as normal bilateral
rods, due to external actions andis the influence matrix of ont . For both it is assumed

a linearly elastic, bilateral behavior for the $tagtructure, where. the cables are considered
as already solidified bars. So, the ‘natural'fsébs matrixC is symmetric and in general
positive semi-definite.

Thus, if t¢ and C are known, then vectorsand v can be determined by solving the
Linear Complementarity ProbletbCP) formed by relations (3) and (4). For the solu of
this problem, various effective algorithms are klde [9]. Most of these algorithms reduce
the above linear complementarity problem to a catsdprogramming one [3-8] of the
form:

Min{ (1/2) VC.v +V'tg/ st. v> 0} (5)

So, e.g., the sign constraints (3b,c) being thg side-conditions, this problem can be
solved easily by the algorithm of Hildreth and ¥gs [3, 8].

After the previous preparation we can now formubldie following numerical procedure

for the static analysis of metal structures comgcable like members:

- a) Considering the cables as having been si@dlihormal bilateralbars), the vector tO
due to external actions is determined by the Figieanent Method.

- b) Under the same assumption and by the samgoches in (a), the influence matri@

is determined. In this matrix, Cij is the stressighforce) in the solidified cable-element i
caused by a unit-shortening vj = “1” imposed e tsolidified cable-member |, (i,] =

1,...,N).
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- ¢) The Linear Complementarity Problem of rel®) &nd (4) is solved to provide the
sought vector. So it is computed which cable-elements are aetiv@inder tension) and
which are not (under non-zero slackness).

- d) The final stress state of .the structureei®anined by taking into account the external
actions and the computed fordesf the active cable-elements.

Thus, the whole procedure requires the linear ielemtalysis of the modified (with
solidified cable-elements) structure (N+2) tim@bkgere N is the number of the cables, and
the solution of a quadratic programming problemaocCP. Alternatively, after having
computed t, the structure is analyzed due to eatexctions by omitting the slack cables
for which stage (c) has given zero tension values.

4. NUMERICAL EXAMPLE

The presented method is applied to a problem wikishmple enough to permit reasonable
assessment of the results, and realistic enoughdemmonstrate applicability and
effectiveness of the method.

As shown in Fig. 1, the example problem considestegl plane frame structure, with
elastic modulus E =21.10 KN/m? , reference bending stiffness .Ef 6300 kNm and
ten (N = 10) cable members with cross-sectiored &r = 5 crfi. These cables are placed
as counter - diagonals and it is not known in adeamhich of them are activated or not by
the given static loads or by a dynamic excitateg, earthquake one. The horizontal loads
correspond to the so-called “equivalent static ilogidaccording to Greek Aseismic Code
(2000) and to wind loads.
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Fig. 1. The steel frame strengthened with 10 caldesents.

The application of the presented numerical procedures first the values of the slackness
of the no activated cable-elements:

v; = 0,8877*10° m, w = 11,7632*1C m, « = 11,0132*1C¢ m, = 11,0478*1C m,
Vio= 1,2988*10° m.
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Further, the elements of the cable-stress vectehere:

t=[S, S - Sd
are computed to have the following values (in kN):
S=F=5=%=50=00,
and
S, = 16,76 KN, $= 272,11 kN, &= 19,96 kN, $= 268,65 kN, &= 21,86 kN.
Thus, cables 2,4,6,7 and 9 are the only ones adiasdng zero slackness. These cables

remain, whereas the other cables 1,3,5,8 and 10eaonsidered as eliminated (or having
F = 0).
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Fig. 2. SAP2000: Bending Moments Diagramme (in xfdmthe frame
with the 5 active cable-elements.

Finally, by using SAP2000 [11], the final stresatstis computed. In Fig. 2 is shown
indicatively the final Bending Moments Diagram tbe frame containing the active cable-
elements only.
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Fig. 3. SAP2000: Bending moments diagramme (in kikmjhe bare frame

(without cable-elements).

For comparison reasons, in Fig. 3 is shown indresiti the final Bending Moments

Diagram for the frame without cable-elements (eame).

5. CONCLUDING REMARKS

A simple numerical procedure for the static analydimetal structures, containing cable-
like members, has been presented herein. The preeetibased on the direct application
of an Equivalence Principle proposed by G. Nitsata[3] for such structures and on a

version of the Direct Stiffness Method of Structukaalysis.
As it has been proved in an example problem, theemical implementation

of the

procedure can be easily obtained by using geneeatbilable programs of the finite
element method and of optimization (quadratic progning). So it can be computed
which of the cable-elements are activated and whieh not in response to the acting

loading system.
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ITEPIAHYH

[Tapovoialetar pio TPAKTIKG OTAN Kot €0xpnotn apduntikn emilvon pe v Apeon
MéBodo Avoxapyiog HETOAMKOV QOPE®V TOV TEPEXOVY KOAMOIWTA OOUIKA GTOUYELd.
[Tpdkertar yio Qopeic pe PHOVOTAELPOVS GUVOEGLOVS TTOL EUEAVIOVY HETAPANTO TPOTO
Aertovpyiac. Apykd yivetar 1 S TOTMOGT] TOV TPOPANUATOS GAV OVIGOTIKO TPOPANLO TG
Mnyavikig tov Kataokevdv. Ot cuvOnikeg mov d1€movv 10 TPOPANUHa givat T060 160TNTEG
0060 Kol ovieotntes. Emonuaivetar 6tL mpdkettal yio. mpoPAnpate eopémv mov gival pn
YPOLLUKG, [E 1010iTEPES OVOKOAIEG TOGO GTNV UAOMUATIKY TOVG TPOGOUOImoT OGO Kol GTNV
apOunTIKy T0V¢ emiAvoN. AkoAo¥OmG, Yoo TNV apOunTiK emihivon Tov TPOPANUATOG,
ypnowonoteitan - Mébodog Apeong Avokouyiag (Direct Stiffness Method)tov
[Nemepacpévav Xtovyeiov (Finite Element Method — F.E.Mck cuvdvaopd pe po pébodo
Beltiotomoinong. Téhog, m OAn peBodoroyion epoapudletal o€ HOL YOPOKTINPIGTIKN
TPOKTIKN TEPITTOON EVOG UETOAAIKOD QOPEN EVICYLUEVOD LE OOLYDVIOVG OVTIGEIGUIKOVG
GUVOEGLLOVG OO KAAMDOLQL.

149



