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1. SUMMARY 
 
This paper presents a simple numerical procedure for the static analysis of linearly elastic 
metal structures, containing cable-like members. The procedure is based on a version of 
the direct Stiffness Method of Structural Analysis and on a relative Equivalence Principle, 
proposed by G. Nitsiotas and holding for problems with unilateral constraints. The Finite 
Element Method is used and a linear complementarity problem with a reduced number of 
unknowns is finally solved. 
 
 
2. INTRODUCTION 
 
Structures containing cable-like members appear very often in the praxis of Civil 
Engineering, see e.g. recently in Greece the steel structures in the Athens Olympic Campus 
(Olympic Games 2004) or the stay-cable system of the Rion-Antirion bridge [1,2].  
The problem of such structures containing cable-like members has its origin in the design 
of some metal structures, such as bridge trusses with counters or lattice struts with counter-
diagonals. As well-known, the cable-like members can undertake tension but buckle and 



 

 143 

become slack and structurally ineffective when subjected to a sufficiently large 
compressive force. Thus the governing conditions take an equality as well as an inequality 
form. So, the problem of structures containing as above cable-like members belongs to the 
so-called Inequality Problems of Mechanics, as their governing conditions are of both, 
equality and inequality type [3-6]. It is a high non-linear problem, requiring special 
treatment techniques [12-14]. 
In the early analysis attempts, many of these structures have been analyzed by a trial-and-
error technique requiring repeated analysis of the structures for various loading systems. 
However, it should be noted that convergence to the correct solution by such iterative 
procedures is not always guaranteed. A more realistic treatment of the problem has been 
obtained by quadratic programming methods [3-4]. Further, the variational or 
hemivariational inequality concept has been used for the rigorous mathematical 
investigation of the problem [5,9]. The early numerical realizations of these approaches 
were based mainly upon the principle of minimum complementary energy [3,6]. Thus, an 
equivalence principle for the analysis of statically undetermined structures with unilateral 
constraints has been proven by G. Nitsiotas [3]. 
On the other hand, most of the available computer programs are based on the Displacement 
Method of structural Analysis. Consequently it seems more advantageous to combine the 
afore-mentioned equivalence principle with the displacement method to obtain a simple 
numerical procedure for the analysis of such structures. 
 
The aim of this paper is to deal with the development of a simple numerical procedure for 
the static analysis of linearly elastic metal structures containing cable-like members by 
using a version of the direct Stiffness (Displacement) Method of Structural Analysis. The 
present procedure is based on the Finite Element Method and the Equivalence Principle, 
proposed by G. Nitsiotas in [3]. Using this principle, the analysis of such structures can be 
reduced to a Linear Complementarity Problem (LCP), which can be solved by various 
effective quadratic programming algorithms. A numerical example shows the direct 
applicability on the computer and the effectiveness of the procedure presented herein. 
 
 
3. METHOD  OF  ANALYSIS 
 
3.1 The Problem Formulation 
 
A linearly elastic metal structure containing N cable-like members is considered. The 
structure is discretized according to the Finite Element Method. For the cables, pin-jointed 
bar elements with unilateral behavior are used. This unilateral behavior for the i-th cable-
element ( i = 1,…,N) is expressed by  the following relations [3,10]: 
 

ei   =  F0i . si  +  ei0  - vi                                            (1) 
 

si   ≥  0 ,    vi  ≥   0  ,     si vi  =     0  .                      (2a,b,c) 
 

Here  ei , F0i, si, ei0 and vi denote the strain (elongation), natural flexibility constant, stress 
(tension), initial strain and slackness, respectively. From (1) it is clear that the slackness vi 
can be considered as an unknown initial strain which constitutes a reversible negative 
elongation [3]. Further, relations (2) express that either a non-negative stress-tension or a 
non- negative slackness exists on any cable. 
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For the remaining structure (besides the cables), the usual linearly elastic finite element 
models, which exhibit a bilateral behaviour, are used. 
 
3.2 The Equivalence Principle and Stiffness Approach 
 
Now the Equivalence Principle, proposed by G. Nitsiotas in [3], is applied for the whole 
structure. According to this principle, the structure under consideration behaves statically 
as an equivalent, linearly elastic structure, under the condition that in each cable-element 
either a non-negative stress or a fictitious, unknown, non- negative  slackness appears-see 
rels (2). Thus, collecting in (Nx1) vectors t  and v the stress and slackness behaviour of all 
the N cable-elements, corresponding, the following Linear Complementarity Conditions 
hold: 

 
t  ≥  0  ,    v  ≥   0  ,    tT v  =     0  .                                   (3a, b, c) 

 
Further, following the Stiffness (Displacement) Method of Structural Analysis, we 
consider the cable-element as solidified rods and we assume that the so-modified structure 
is a statically stable one with bilateral rod-elemenets. So, the tension vector  t  is 
decomposed as follows [10]: 
 

 
t  =  C . v  +  t0                                                        (4) 

 
Here t0 is the stress vector of the solidified cable-elements, now acting as normal bilateral 
rods, due to external actions and C  is the influence matrix of v on t . For both it is assumed 
a linearly elastic, bilateral behavior for the stable structure, where. the cables are considered 
as already solidified bars. So,  the ‘natural’ stiffness matrix  C  is symmetric and in general 
positive semi-definite. 

 
Thus, if  t0   and  C   are known, then vectors  t and  v  can be determined by solving the 
Linear Complementarity Problem (LCP) formed by relations (3) and (4). For the solution of 
this problem, various effective algorithms are available [9]. Most of these algorithms reduce 
the above linear complementarity problem to a quadratic programming one [3-8] of the 
form: 

 
Min{  (1/2)  vT C . v  +  vT t0  /  s.t.   v  ≥   0  }                                            (5)  

 
So, e.g., the sign constraints (3b,c) being the only side-conditions, this problem can be 
solved easily by the algorithm of Hildreth and D'Esopo [3, 8]. 
 
After the previous preparation we can now formulate the following numerical procedure 
for the static analysis of metal structures containing cable like members: 
- a)  Considering the cables as having been solidified (normal bilateralbars), the  vector t0   
due to external actions is determined by the Finite Element Method. 
- b)  Under the same assumption and by the same method as in (a), the influence matrix  C  
is determined. In this matrix, Cij is the stress (axial force)  in the solidified cable-element i 
caused by a unit-shortening  vj = “1”  imposed in the solidified cable-member j, (i,j = 
1,…,N). 
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- c)  The Linear Complementarity Problem of rels. (3) and (4) is solved to provide the 
sought vector v. So it is computed which cable-elements are activated (under tension) and 
which are not (under non-zero slackness). 
- d)  The final stress state of .the structure is determined by taking into account the external 
actions and the computed forces t of the active cable-elements. 
Thus, the whole procedure requires the linear elastic analysis of the modified (with 
solidified cable-elements) structure  (N+2) times, where N is the number of the cables, and 
the solution of a quadratic programming problem or a LCP. Alternatively, after having 
computed t, the structure is analyzed due to external actions by omitting the slack cables 
for which stage (c) has given zero tension values. 
 
 
4. NUMERICAL  EXAMPLE  
 
The presented method is applied to a problem which is simple enough to permit reasonable 
assessment of the results, and realistic enough to demonstrate applicability and 
effectiveness of the method. 
As shown in Fig. 1, the example problem considers a steel plane frame structure, with 
elastic modulus   Ε =21.107 KN/m2 , reference bending stiffness  EIc =  6300 kNm2 and  
ten  (N = 10)  cable members with cross-sectional area Fr = 5 cm2 . These cables are placed 
as counter - diagonals and it is not known in advance which of them are activated or not by 
the given static loads or by a dynamic excitation, e.g. earthquake one. The horizontal loads 
correspond to the so-called “equivalent static loading” according to Greek Aseismic Code 
(2000) and to wind loads. 
 
 

 
 

Fig. 1. The steel frame strengthened with 10 cable-elements. 
 
 
The application of the presented numerical procedure gives first the values of the slackness 
of the no activated cable-elements: 
 
v1 = 0,8877*10-3 m,  v3 = 11,7632*10-3 m,  v5 = 11,0132*10-3 m,  v8 = 11,0478*10-3 m,   
v10 = 1,2988*10-3  m. 
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Further, the elements of the cable-stress vector t, where: 
 

t = [S1, S2, …, S10]
T, 

 
are computed to have the following values (in kN): 

 
S1 = S3 = S5 = S8 = S10 = 0.0, 
 

and 
 

S2 =  16,76 kN,  S4 =  272,11 kN,  S6 =  19,96 kN,  S7 =  268,65 kN,  S9 =  21,86 kN. 
 

Thus, cables 2,4,6,7 and 9 are the only ones active, having zero slackness. These cables 
remain, whereas the other cables 1,3,5,8 and 10 can be considered as eliminated (or having 
Fr = 0). 
 
 

 
 

Fig. 2. SAP2000: Bending Moments Diagramme  (in kNm) for the frame 
with the 5 active cable-elements. 

 
Finally, by using SAP2000 [11], the final stress state is computed. In Fig. 2 is shown 
indicatively the final Bending Moments Diagram for the frame containing the active cable-
elements only.  
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Fig. 3. SAP2000: Bending moments diagramme (in kNm)  for the bare frame  
(without cable-elements). 

 
 
 
For comparison reasons, in Fig. 3 is shown indicatively the final Bending Moments 
Diagram for the frame without cable-elements (bare frame). 
 
 
5. CONCLUDING REMARKS  
 
A simple numerical procedure for the static analysis of metal structures, containing cable-
like members, has been presented herein. The procedure is based on the direct application 
of an Equivalence Principle proposed by G. Nitsiotas in [3] for such structures and on a 
version of the Direct Stiffness Method of Structural Analysis.  
As it has been proved in an example problem, the numerical implementation of the 
procedure can be easily obtained by using generally available programs of the finite 
element method and of optimization (quadratic programming). So it can be computed 
which of the cable-elements are activated and which are not in response to the acting 
loading system. 
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ΠΕΡΙΛΗΨΗ 
 

Παρουσιάζεται µια πρακτικά απλή και εύχρηστη αριθµητική επίλυση µε την Άµεση 
Μέθοδο ∆υσκαµψίας µεταλλικών φορέων που περιέχουν καλωδιωτά δοµικά στοιχεία. 
Πρόκειται για φορείς µε µονόπλευρους συνδέσµους που εµφανίζουν µεταβλητό τρόπο 
λειτουργίας. Αρχικά γίνεται η διατύπωση του προβλήµατος σαν ανισοτικό πρόβληµα της 
Μηχανικής των Κατασκευών. Οι συνθήκες που διέπουν το πρόβληµα είναι τόσο ισότητες 
όσο και ανισότητες. Επισηµαίνεται ότι πρόκειται για προβλήµατα φορέων που είναι µη 
γραµµικά, µε ιδιαίτερες δυσκολίες τόσο στην µαθηµατική τους προσοµοίωση όσο και στην 
αριθµητική τους επίλυση. Ακολούθως, για την αριθµητική επίλυση του προβλήµατος, 
χρησιµοποιείται η Μέθοδος Άµεσης ∆υσκαµψίας (Direct Stiffness Method) των 
Πεπερασµένων Στοιχείων (Finite Element Method – F.E.M.) σε συνδυασµό µε µια µέθοδο 
βελτιστοποίησης. Τέλος, η όλη µεθοδολογία εφαρµόζεται σε µια χαρακτηριστική 
πρακτική περίπτωση ενός µεταλλικού φορέα ενισχυµένου µε διαγώνιους αντισεισµικούς 
συνδέσµους από καλώδια. 


