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1. ABSTRACT

Deflections of simple aluminium structures due iteep when the structure is subjected to
fire, could be important. Their explicit calculaties necessary under certain conditions of
time and temperature exposure (Eurocode EN 1999{1]2 Their calculation is, in
general, cumbersome and demands the applicatithre @ppropriate software.

In the present study, simple solutions, which carused on simple structures and demand
little or no use of computer, are presented.

2. INTRODUCTION

Under creep in structures one understands timendiedé changes of strain and stress
states taking place as a consequence of extemamihip and temperature.

Both the microstructural and the phenomenologiescdption of creep can be applied.
For the most conventional engineering applicatidhe, phenomenological description is
enough, i.e. the local changes in the structuréghefmaterial can be neglected and the
mathematical formulation describing the phenomeman be based on macroscopic
observations. An historical review of the studycogep is given by H. Altenbach [2], J.
Hult [3], J. Finnie and W. Heller [4]. It is obvieuhat the effect of creep on structures is of
major concern for the mechanical engineers. Cresgarbe of great interest for civil
engineers due to the development of fire engingertowever, the design taking into
account creep is generally different in mechanaa civil engineering applications. The
time interval, in which the phenomenon is develgpgdignificantly lower not exceeding
2.5 hours in a typical fire. However, machine arathine elements are subjected to higher
temperatures for longer time periods (10,000-10IHE) and the developed stresses are
usually lower than in civil engineering applicatson

The past 20 years aluminium alloys structures ae=l un civil engineering applications
due to a number of reasons: low weight and satmfacmechanical strength, good
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corrosion resistance for certain alloys and goadhébility due to the extrusion process.
As main disadvantages one could mention the lowulusdof elasticity comparing to steel
(EauminEsteel3) and the low melting point (680). Eurocode prEN1999-1-2 [1] deals with
the study of structures subjected to fire. Accagdito this regulation, the explicit
calculation of the deformations due to creep iseasary when the temperature exceeds
170°C for over ¥ hour. Design rules for steel structusebjected to fire are based on
extensive experimental results and on plentifuleeigmce. On the contrary, in the case of
aluminium, only a few experimental results are kde. An important contribution to the
study of aluminium structures subjected to firéhis work of N.K. Langhelle [5], in which
an extended bibliography is presented.

3. CREEP STRESSANALYSIS

On the typical deformation-time creep curve, degalcin Fig. 1, three different regions
corresponding to three different stages of creepbeaobserved:

1. Primary creep, in which the creep rate is decrgasin

2. Secondary or steady state creep, in which the aedeps steady
3. Tertiary creep is the final stage before fracturé has an increasing creep rate.

Fracture

Strain

Primary, Secondary . Tertiary .

inelastic strain

i Steady state
= (minimum rate)

—

—

T Initial elastic strain > Time

Fig. 1 Typical creep curve

It is generally accepted that in metals and inrth#oys, the deformations, which interest
the engineer, are developed in temperaiurge0.4T,,, where T, is the melting point of the

metal in°K (76.2 C or 348 Kor aluminium alloys). According to Sandstrom [6feep
effect on aluminium alloy 6082 is important for @mgering applications in temperatures
above 75C.

The creep stress analysis is, in general, a cumimerproblem due to the nonlinearity of
the solving differential equations. Except for a/feases (J. T. Boyle and J. Spence, [7]),
creep problems do not lead to closed form equationstatically indeterminate structures,
a redistribution of stresses due to creep, takaseplThis redistribution, known as transient
creep, begins at t=0, (stresses are elastic) antinces until the distribution of stresses
reach a steady state. During this procedure, higlestic stresses tend to be decreased,
whereas lower stresses tend to be increased. Tocegure takes place in a relatively
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small time period and the developed deformatioasaher small (Fig. 2). Then, to a good
approximation [7], the superposition principle che used. According to this, the
deformations can be calculated by the superpostioan elastic part, as if no creep is
present and a pure creep part, where no elastlectiehs are present. Thereafter, the
explicit calculation of deformations becomes unseaey. Accordingly, the strain rate is
given by the following equation:

de 1 do n

dt E dt-'_g(t)6 )
where:
g(t) is the time function and

n is a temperature dependent constant
A

Typical deflection
AN

Defléction due to
sfress redistribution
//
Ve
/
s
//
/ - Steady state

Initial elastic

Time >
Fig. 2: Time variation of a typical displacement in a creeping structure under constant load

In statically determinate structures under steadyperature subjected to a constant load,
the calculation of deflections in steady state mrderives from closed form equations.
During this stage, stress and deformation distidiouait the cross section remains stable
and can be defined as a typical problem of elagticiot taking into account the time
parameter (elastic analogy). In steady creep dfuetsire, stresses and strain rates remain
constant over time and the strains due to creepgiaea by:

e=B-c"-t (2)

It can be said that in steady creep the curvegn Fis replaced by a line, which is parallel
to the line segment of the secondary creep curdeleneq. (1) becomes accordingly:

G _1® poo @3)

dt E dt

Obviously, the major problem is the determinatidnBoand n parameters, which are
determined experimentally. It should be mentionbd tack of experimental results
concerning the determination of these parameteatuminium structures. In table 1, these
parameter values for alloy EN AW 6082-T6 are gidnK Langhelle, [5]).

Temperature B n m
200°C 7.47-10% 2.31 -0.1
250°C 2 57.10% 15.06 -0.1

Table 1: B, n, m parameters
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Langhelle has used the constitutive law of theofelhg form:

m+1

e=B-c" 4
m+1 )

Approximately, this law can be substituted by atieh of the form given in eq. (2). J.G.
Kaufman [8] gives also tabular data concerning ogheminium alloys, where the stresses
corresponding to the relevant strain rates foragertime and temperature conditions, are
given. Data for aluminium alloy EN AW 6061-T6 isvgn in Table 2.

Stress at 206 (MPa) Time (hrs) Strain rate
130 100 0,1%
95 1000 0,1%
Table 2: Stress and strain rates at 205°C for 6061-T6 aluminium alloy for various times

Values of B=3.04- 10" and n=7.34 can be derived with the appropriat@dtof eq. (2) to

the data given in table 2.These values of B armqerhaps are not considered to be accurate
enough. However, it must be remembered that wenatedealing with elastic stresses,
where the elastic constants and even the yieldt @dia given material can be measured
with reasonable accuracy. In creep, small changesich variables as stress, temperature,
composition, heat treatment or method of manufactoray greatly influence creep
behaviour and hence a simple empirical expressiothe creep data may be adequate for
rational design [4].

4. DEFORMATIONSOF A SIMPLE BEAM
For the calculation of the deflections of a beanthim steady state creep, the dummy force

method can be used. This method is based uporritihegbe of the virtual work, which is
valid in all cases, irrespective of the constitetiaw.

Fig. 3 Deformed shape of an infinitesimal element under bending

From Fig. 3 and considering thé is thevalue of deflection in point i due to the loading p
M(s) is the moment diagram derived using the unit durfionge method andde is the

curvature of the infinitesimal element ds, it isided that:
Ado=(e/(h/2))ds (4)
where h is the height of the cross section. Sulstg e from eq. [2] gives:
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B-c"-t M(s) 1
Adp=———ds=B -h/2 -ds t 5
== M s (5)
Accordingly, the deflection is given by:
s M(s) 1
dp=t- | M(s) B -h/2 -ds 6
p j (8) - BC =2y (6)

In the appendix, the appropriate relations for ¢hteulation of beam deformations with
simple supports and loadings, are given.

In Eurocode EN 1999-1-2 the calculation of deflees is required, in order to eliminate
the danger of failure in fire protective insulatiand compartment walls. Despite this, no
deflection limits are given. In BS 5950 Part 8 [®Ftated that “where a fire resisting wall
liable to be subjected to significant additionattical load due to the increased vertical
deflection of a steel beam in a fire either:

(a)provision should made to accommodate the aitiegvertical movement of the beam
or,

(b)the wall should be designed to resist the anltfti vertical load in fire conditions”.
R.M.Lawson and G.M.Newman in [10] give a deflectlonit equal to L/200, where L is
the span length. This provision could also be useduminium structures.

5. NUMERICAL APPLICATION

In the following, the creep deflection of a simlepported beam with length 3000mm,
loaded by a concentrated force in the middle, isutated. The cross-section of the beam,
which is non-fire protected, is double T. The miales the heat-treated aluminium alloy
EN AW 6082-T6. The beam is assumed to have a taanperof 200C with a duration of
3600 seconds. The parameter values B and n ane fiaie Langhelle results.

“ b >

Geometry of the C/S T | %

h 114 r

b 120 ¢

t 4.6 R "

s 11
All units in mm |

A4

Fig. 4 Geometry of the cross section

The deflection of this beam according to the simipgam theory without taking into
account the creep phenomenon is:
3
__P I 14000 3009 —15.00mm )

48-E | 48 70000 748 10

From relation ain appendlx, the following is dexv
2Bt L
= (—) (

Zra =T 1 )4(n 1 2)
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_2.7,47E- 12 360 114 \**( 14000 30Y0" 3600
= — 2 1=6,14mm (8)
114 2:748,2 10 4 ¢ 2,31)

6. CONCLUDING REMARKS

In the present study, closed-form solutions fordhkulation of creep deflections in a fire
situation were presented. For the cases, wheréosed:form solutions were proposed, the
dummy force method, appropriately applied, can $&duExperimental data for different
aluminium alloys, found in bibliography, were alssed in an appropriate fitting of the
power law describing the dependence of creep rasdress.

From the given example was derived that creep clédie is 29% of the total deflection of
a non-fire-protected beam with a concentrated lmpdn the middle subjected to a
temperature of 20C. It should be remembered that the creep behavibwarious
aluminium alloys is different and further reseaixheeded.

7. APPENDIX

Calculation of deflection

1. Simple beam

a. Concentrated force in the midd#e
2Bt 12

Zmax =) (?)( ) 4(n+ 2)

b. Distributed loading q
Zpe = [ [20 = K- [1 (XL =X?) " |dX]dx
0

where:
L/2

ZBt )(§

Also can be used the following closed-form solutjproposed by F. Odqvist [11] for
double T cross sections with a negligible stiffnesthe web and an integer n.

4 1? _gh?.,
Z — B-C,-t
max TCZ 2h[8Ah] 1

C, is a constant , which is given in the followingl&for integer values of n from 1 to 7.

Cq
1,032049104
0,891088551
0,79576768
0,7257593
0,671527
0,62836
0,6258

~No bk~ WNEF|S
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2. Cantilever (I. Finnie,W.R.Heller, [4])
a. Distributed loading q

2Bt . h gl L2

Zre = G ) S

where:

h height of the cross section

B, n creep parameters

A area of the flange of a double T cross section
L length of the beam

Ic virtualmoment of inertia, which is:

3nl/(2n+1) for rectangular cross sections and
Ic~1,in double T cross sections, when the web has nbtgigtiffness
t time
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O gpmTUGPOG 68 KATUGKEVES ATO AAOVNIVIO

Dotavn I'. Ilpeptiton
Ap. Holtikég Mnyavikog,
Emoetmpovikn covepyatng tov TEI Xeppdv kan tov TEI A. Maxkedoviag

Kipov Oopémoviog
KaOnyntig Meto KOV KOTAGKEVAOV TOV
Tpiqpatog Holtikdv Minyovikov AIIO

IIEPIAHYH

H epyacio apopd otn pehétn tng emidpacng Tov EpMUGUOV GE JopKA oTolxeio. amd
KPOAUATO aAOLUVIOV, TOV eKTIOEVTOL GE TLPKAYLEL. ZOUEOVO UE TO LOYVOV KOVOVIGTIKO
mwaicio (PrEN1999-1-2:2006)9 avaivtikdg vmoroyiopds tov fubicemv Ady® epmucouov
o€ dopkd otoryeio amd alovpivio, emPariietal oty TEPITT®OT, TOV 1 BEPLOKPAGia TOV
dopkod otoryeiov vaepPaiverl Toug 170 C yia ypovikd SidoTnuo peyaAdTEPO TG UGG
dpag. T'evikd o vroroyioudg tov Pubicenv dopukdv otoleiov AOYy® €PTLGUOL UE TNV
avamtuén mopkayldg amottel ) ypnomn eEEOIKELUEVOL AOYIoUIKOV. O VTOAOYIGUOS TV
petakwvioemv  Adyw gpmocpod  Pooiletor o apyéc g pumyavikng  (emoliniio
KOTOOTAGE®Y, EAAGTIKO 0vAAoyo, nEB0d0og mAooUATIKAG dvvaung). Ot apyéc avtéc oe
OUVOLOGUO E TEIPAPATIKA OEOOUEVA €YOVV €VPEMS YpNOoLomomBel katd Tn peAt
KOTAGKELAOV amd yOAvPa, OTov To eowvopevo £xst peretnOel sktetapéva. XTo KPApoTo
alovpviov, 6€ OVTIOIGTOAN UE TO YdAvPa, VTAPYEL ONUAVTIKY EAAENYT] TEPAUATIKOV
OTOTEAEGUATOV, 1| OTOl0L GE GUVOLAGUO UE TNV TOIKIAOTNTA, IOV ep@avifovv avtd, 660
APOPE OTIC UNYOVIKES TOVG 1010TNTES (cLpPatikd opto drappong o2 kot dplo Opavong fy)
emteivel TIG OVGKOAIEG OVTIUETOMIONG TOV EPTUGLOL GE QLTA. ZTNV TOPOVCH EPYAUCIOL
mapovotalovtol KAEIGTOH TOTOL AVGCELS Yo Tov vIoAoylopd Tov Pubiccmv, oe TumIKA
KOUTTOHEVO OOUIKA oTolxeion vmd Jpopes ovVONKeS OOPTIONG. XTIG AVGES OVTEG
YPNOUYLOTOLOVVTOL GUVTEAECTES Y10 TOV EPTVOUO, Ol OTTOT0L ACUPAVOVTOL OO TELPOLOTUKE,
dedopéva, mov Exovv Ppebel ot Pifioypagia Yo To Oepuikdg katepyaldpeva Kpapoto
EN AW 606116 a1 EN AW 608276, ta. omoia kvpimg xpNOUOTOI00VTOL OTIS OOMKEG
epappoyés. O1, KAEGTOV TOTOV, OVTEC ADGELS OMOTEAOVV £val XPNOLLO £pYaAeio KaODG
TPOCOEPOVY il ETOPKT OVIIUETOTION TOV TPOPAUATOC Ympic T YpNon &Koy
AOYIOUIKOV.

Xy epyocion avt) extibetor TEA0G €va TAPASELYLO VTOAOYIGHOL TV Pubicemv Adym

EPTMUGLOL LIOGC OUEEPEIGTNG OOKOV HE QOPTIO OTO HEGO YOPIG TLPOTPOCTOTEVTIKN
pévoon yu o kpapo EN AW 6082°6.
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