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1. ABSTRACT 
 
Deflections of simple aluminium structures due to creep when the structure is subjected to 
fire, could be important. Their explicit calculation is necessary under certain conditions of 
time and temperature exposure (Eurocode EN 1999-1-2, [1]). Their calculation is, in 
general, cumbersome and demands the application of the appropriate software. 
In the present study, simple solutions, which can be used on simple structures and demand 
little or no use of computer, are presented. 
 
 
2. INTRODUCTION 
 
Under creep in structures one understands time-dependent changes of strain and stress 
states taking place as a consequence of external loading and temperature.  
Both the microstructural and the phenomenological description of creep can be applied. 
For the most conventional engineering applications, the phenomenological description is 
enough, i.e. the local changes in the structure of the material can be neglected and the 
mathematical formulation describing the phenomenon can be based on macroscopic 
observations. An historical review of the study of creep is given by H. Altenbach [2], J. 
Hult [3], J. Finnie and W. Heller [4]. It is obvious that the effect of creep on structures is of 
major concern for the mechanical engineers. Creep became of great interest for civil 
engineers due to the development of fire engineering. However, the design taking into 
account creep is generally different in mechanical and civil engineering applications. The 
time interval, in which the phenomenon is developed, is significantly lower not exceeding 
2.5 hours in a typical fire. However, machine and machine elements are subjected to higher 
temperatures for longer time periods (10,000-100,000hrs.) and the developed stresses are 
usually lower than in civil engineering applications. 
 
The past 20 years aluminium alloys structures are used in civil engineering applications 
due to a number of reasons: low weight and satisfactory mechanical strength, good 
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corrosion resistance for certain alloys and good formability due to the extrusion process. 
As main disadvantages one could mention the low modulus of elasticity comparing to steel 
(Ealumin=Esteel/3) and the low melting point (600oC). Eurocode prEN1999-1-2 [1] deals with 
the study of structures subjected to fire. According to this regulation, the explicit 
calculation of the deformations due to creep is necessary when the temperature exceeds 
170oC for over ½ hour. Design rules for steel structures subjected to fire are based on 
extensive experimental results and on plentiful experience. On the contrary, in the case of 
aluminium, only a few experimental results are available. An important contribution to the 
study of aluminium structures subjected to fire is the work of N.K. Langhelle [5], in which 
an extended bibliography is presented. 
 
 
3. CREEP STRESS ANALYSIS 
 
On the typical deformation-time creep curve, depicted in Fig. 1, three different regions 
corresponding to three different stages of creep can be observed: 
 

1. Primary creep, in which the creep rate is decreasing 
2. Secondary or steady state creep, in which the creep rate is steady 
3. Tertiary creep is the final stage before fracture and has an increasing creep rate. 
 

 
Fig. 1 Typical creep curve 

 
It is generally accepted that in metals and in their alloys, the deformations, which interest 
the engineer, are developed in temperature mT 0.4T≤ , where Tm is the melting point of the 

metal in oK ( o o76.2 C or 349 Kfor aluminium alloys). According to Sandstrom [6], creep 
effect on aluminium alloy 6082 is important for engineering applications in temperatures 
above 75oC. 
 
The creep stress analysis is, in general, a cumbersome problem due to the nonlinearity of 
the solving differential equations. Except for a few cases (J. T. Boyle and J. Spence, [7]), 
creep problems do not lead to closed form equations. In statically indeterminate structures, 
a redistribution of stresses due to creep, takes place. This redistribution, known as transient 
creep, begins at t=0, (stresses are elastic) and continues until the distribution of stresses 
reach a steady state. During this procedure, higher elastic stresses tend to be decreased, 
whereas lower stresses tend to be increased. This procedure takes place in a relatively 
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small time period and the developed deformations are rather small (Fig. 2). Then, to a good 
approximation [7], the superposition principle can be used. According to this, the 
deformations can be calculated by the superposition of en elastic part, as if no creep is 
present and a pure creep part, where no elastic deflections are present. Thereafter, the 
explicit calculation of deformations becomes unnecessary. Accordingly, the strain rate is 
given by the following equation: 

ndε 1 dσ
g(t)σ

dt E dt
= +                   (1) 

where: 
g(t) is the time function and  
n is a temperature dependent constant  

 
Fig. 2: Time variation of a typical displacement in a creeping structure under constant load 

 
In statically determinate structures under steady temperature subjected to a constant load, 
the calculation of deflections in steady state creep derives from closed form equations. 
During this stage, stress and deformation distribution at the cross section remains stable 
and can be defined as a typical problem of elasticity, not taking into account the time 
parameter (elastic analogy). In steady creep of a structure, stresses and strain rates remain 
constant over time and the strains due to creep are given by: 

nB tε = ⋅σ ⋅                    (2) 
It can be said that in steady creep the curve in Fig. 1 is replaced by a line, which is parallel 
to the line segment of the secondary creep curve and the eq. (1) becomes accordingly: 

nd 1 d
B

dt E dt

ε σ
= + σ                     (3) 

Obviously, the major problem is the determination of B and n parameters, which are 
determined experimentally. It should be mentioned the lack of experimental results 
concerning the determination of these parameters in aluminium structures. In table 1, these 
parameter values for alloy EN AW 6082-T6 are given (N. K Langhelle, [5]). 
 

Temperature B n m 
200oC 127.47 10−⋅  2.31 -0.1 
250oC 122.57 10−⋅  15.06 -0.1 

Table 1: B, n, m parameters 
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Langhelle has used the constitutive law of the following form: 

m+1
n t

m+1
ε = Β⋅σ                   (4) 

Approximately, this law can be substituted by a relation of the form given in eq. (2). J.G. 
Kaufman [8] gives also tabular data concerning other aluminium alloys, where the stresses 
corresponding to the relevant strain rates for certain time and temperature conditions, are 
given. Data for aluminium alloy EN AW 6061-T6 is given in Table 2. 
 

Stress at 205oC (MPa) Time (hrs) Strain rate 
130 100 0,1% 
95 1000 0,1% 

Table 2: Stress and strain rates at 205oC for 6061-T6 aluminium alloy for various times 
 
Values of B= 193.04 10−⋅  and n=7.34 can be derived with the appropriate fitting of eq. (2) to 
the data given in table 2.These values of B and n, perhaps are not considered to be accurate 
enough. However, it must be remembered that we are not dealing with elastic stresses, 
where the elastic constants and even the yield point of a given material can be measured 
with reasonable accuracy. In creep, small changes in such variables as stress, temperature, 
composition, heat treatment or method of manufacture may greatly influence creep 
behaviour and hence a simple empirical expression for the creep data may be adequate for 
rational design [4]. 
 
 
4. DEFORMATIONS OF A SIMPLE BEAM 
 
For the calculation of the deflections of a beam in the steady state creep, the dummy force 
method can be used. This method is based upon the principle of the virtual work, which is 
valid in all cases, irrespective of the constitutive law. 
 

 
From Fig. 3 and considering that δip is the value of deflection in point i due to the loading p, 
M(s)  is the moment diagram derived using the unit dummy-force method and ∆dφ is the 
curvature of the infinitesimal element ds, it is derived that: 
∆dφ=(ε/(h/2))ds                  (4) 
where h is the height of the cross section. Substituting ε from eq. [2] gives: 

 
Fig. 3 Deformed shape of an infinitesimal element under bending  
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∆dφ=
nB t

ds
h / 2

⋅σ ⋅
= n

c

M(s) 1
B( h / 2) ds t

I h / 2
⋅ ⋅ ⋅ ⋅                    (5) 

Accordingly, the deflection is given by: 

δip=t⋅
L

0
∫ M(s) ⋅ n

c

M(s) 1
B( h / 2) ds

I h / 2
⋅ ⋅ ⋅                (6) 

In the appendix, the appropriate relations for the calculation of beam deformations with 
simple supports and loadings, are given. 
 
In Eurocode EN 1999-1-2 the calculation of deflections is required, in order to eliminate 
the danger of failure in fire protective insulation and compartment walls. Despite this, no 
deflection limits are given. In BS 5950 Part 8 [9] is stated that “where a fire resisting wall 
liable to be subjected to significant additional vertical load due to the increased vertical 
deflection of a steel beam in a fire either: 
 
(a)provision should made to accommodate the anticipated vertical movement of the beam 
or, 
(b)the wall should be designed to resist the additional vertical load in fire conditions”. 
R.M.Lawson and G.M.Newman in [10] give a deflection limit equal to L/200, where L is 
the span length. This provision could also be used in aluminium structures. 
 
 
5. NUMERICAL APPLICATION  
 
In the following, the creep deflection of a simple supported beam with length 3000mm, 
loaded by a concentrated force in the middle, is calculated. The cross-section of the beam, 
which is non-fire protected, is double T. The material is the heat-treated aluminium alloy 
EN AW 6082-T6. The beam is assumed to have a temperature of 200οC with a duration of 
3600 seconds. The parameter values B and n are taken from Langhelle results. 
 

 

Geometry of the C/S 
h 114 
b 120 
tw 4.6 
tf 11 

All units in mm 

Fig. 4 Geometry of the cross section  

 
The deflection of this beam according to the simple beam theory without taking into 
account the creep phenomenon is: 

3 3

4

P l 14000 3000
z 15,00mm

48 E I 48 70000 748 10

⋅ ⋅

= = =

⋅ ⋅ ⋅ ⋅ ⋅

              (7) 

From relation a in appendix, the following is derived: 
2

n n
max

c

2Bt h PL L
z ( ) ( )

h 2I 4 4(n 2)
=

+
= 
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=
( )

2,31 2,31 2

4

2 7,47E 12 3600 114 14000 3000 3000

114 2 748,2 10 4 4 2,31 2

 ⋅ − ⋅ ⋅   
     ⋅ ⋅ +    

=6,14mm         (8) 

 
 
6. CONCLUDING REMARKS  
 
In the present study, closed-form solutions for the calculation of creep deflections in a fire 
situation were presented. For the cases, where no closed-form solutions were proposed, the 
dummy force method, appropriately applied, can be used. Experimental data for different 
aluminium alloys, found in bibliography, were also used in an appropriate fitting of the 
power law describing the dependence of creep rate on stress. 
From the given example was derived that creep deflection is 29% of the total deflection of 
a non-fire-protected beam with a concentrated loading in the middle subjected to a 
temperature of 200oC. It should be remembered that the creep behaviour of various 
aluminium alloys is different and further research is needed. 
 
 
7. APPENDIX 
 
Calculation of deflection 
1. Simple beam  
a. Concentrated force in the middle Ρ  

2
n n

max
c

2Bt h PL L
z ( ) ( )

h 2I 4 4(n 2)
=

+
 

b. Distributed loading q 
x

' 2 n
max 0

0

z [z K (X L X ) dX]dx= − ⋅ | ⋅ − |∫ ∫  

where: 
L /2

2 n
0

0

z K (L x x ) dx′ = ⋅ ⋅ −∫  

n n

c

2B t h q
K ( ) ( )

h 2I 2

⋅

=                                                                                            

Also can be used the following closed-form solution proposed by F. Odqvist [11] for 
double T cross sections with a negligible stiffness of the web and an integer n. 

  

 
 

C1 is a constant , which is given in the following table for integer values of n from 1 to 7. 
 
 
 
 
 
 
 
 
 

n C1 
1 1,032049104 
2 0,891088551 
3 0,79576768 
4 0,7257593 
5 0,671527 
6 0,62836 
7 0,6258 

2 2
n

max 12

4 L qh
z [ ] B C t

2h 8Ah
= ⋅ ⋅ ⋅ ⋅
π
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2. Cantilever (I. Finnie,W.R.Heller, [4]) 
a. Distributed loading q 

2 2
n n

max
c

2Bt h qL L
z ( ) ( )

h 2I 2 2(n 1)
=

+
 

where: 
h height of the cross section 
B, n creep parameters 
Α area of the flange of a double T cross section 
L length of the beam 
Ιc virtual moment of inertia, which is: 

3nI/(2n+1) for rectangular cross sections and  
Ιc≈ I , in double T cross sections, when the web has negligible stiffness 

t time 
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ΠΕΡΙΛΗΨΗ 
 
Η εργασία αφορά στη µελέτη της επίδρασης του ερπυσµού σε δοµικά στοιχεία από 
κράµατα αλουµινίου, που εκτίθενται σε πυρκαγιά. Σύµφωνα µε το ισχύον κανονιστικό 
πλαίσιο (prEN1999-1-2:2006), ο αναλυτικός υπολογισµός των βυθίσεων λόγω ερπυσµού 
σε δοµικά στοιχεία από αλουµίνιο, επιβάλλεται στην περίπτωση, που η θερµοκρασία του 
δοµικού στοιχείου υπερβαίνει τους 170ο C για χρονικό διάστηµα µεγαλύτερο της µισής 
ώρας. Γενικά ο υπολογισµός των βυθίσεων δοµικών στοιχείων λόγω ερπυσµού µε την 
ανάπτυξη πυρκαγιάς απαιτεί τη χρήση εξειδικευµένου λογισµικού. Ο υπολογισµός των 
µετακινήσεων λόγω ερπυσµού βασίζεται σε αρχές της µηχανικής (επαλληλία 
καταστάσεων, ελαστικό ανάλογο, µέθοδος πλασµατικής δύναµης). Οι αρχές αυτές σε 
συνδυασµό µε πειραµατικά δεδοµένα έχουν ευρέως χρησιµοποιηθεί κατά τη µελέτη 
κατασκευών από χάλυβα, όπου το φαινόµενο έχει µελετηθεί εκτεταµένα. Στα κράµατα 
αλουµινίου, σε αντιδιαστολή µε το χάλυβα, υπάρχει σηµαντική έλλειψη πειραµατικών 
αποτελεσµάτων, η οποία σε συνδυασµό µε την ποικιλότητα, που εµφανίζουν αυτά, όσο 
αφορά στις µηχανικές τους ιδιότητες (συµβατικό όριο διαρροής f 0.2 και όριο θραύσης fu) 
επιτείνει τις δυσκολίες αντιµετώπισης του ερπυσµού σε αυτά. Στην παρούσα εργασία 
παρουσιάζονται κλειστού τύπου λύσεις για τον υπολογισµό των βυθίσεων, σε τυπικά 
καµπτόµενα δοµικά στοιχεία υπό διάφορες συνθήκες φόρτισης. Στις λύσεις αυτές 
χρησιµοποιούνται συντελεστές για τον ερπυσµό, οι οποίοι λαµβάνονται από πειραµατικά 
δεδοµένα, που έχουν βρεθεί στη βιβλιογραφία για τα θερµικώς κατεργαζόµενα κράµατα 
ΕΝ ΑW 6061-Τ6 και EN AW 6082-Τ6, τα οποία κυρίως χρησιµοποιούνται στις δοµικές 
εφαρµογές. Οι, κλειστού τύπου, αυτές λύσεις αποτελούν ένα χρήσιµο εργαλείο καθώς 
προσφέρουν µία επαρκή αντιµετώπιση του προβλήµατος χωρίς τη χρήση ειδικού 
λογισµικού. 
 
Στην εργασία αυτή εκτίθεται τέλος ένα παράδειγµα υπολογισµού των βυθίσεων λόγω 
ερπυσµού µίας αµφιέρειστης δοκού µε φορτίο στο µέσο χωρίς πυροπροστατευτική 
µόνωση για το κράµα EN AW 6082Τ6. 
 


