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1. ABSTRACT

The accurate estimation of the seismic performanfcsteel structures requires reliable
information on the effect of our incomplete knowgedof the actual system parameters.
Aiming to provide such an outlook we undertake enprehensive effort to quantify the
uncertainty for a single steel moment-resistingmigaby bringing together several
important advances. Model parameters are describgd complete probabilistic
distributions including intra-member and inter-memlzorrelation information derived
from experimental data from a recently developddlokse for modeling steel components.
Incremental dynamic analysis is employed to acelyassess the seismic performance of
the model for any combination of the parameterspeyforming multiple nonlinear
timehistory analyses for a suite of ground motienords. Finally, we use an efficient
Monte Carlo simulation algorithm based on increrakmiatin Hypercube Sampling to
efficiently propagate the uncertainties from thenewous parameters to the actual system
demand and capacity. The effect of model paramateertainties on the seismic behavior
of the 9-story steel moment resisting frame is thuantified, offering a unique method to
assess the actual margin of safety inherent irstag} frame structure.

2.  INTRODUCTION

The evaluation of the seismic demand and capaditstractures stands at the core of
performance-based earthquake engineering. Whilelenes have emerged [1] that
recognize the need for assessing epistemic unegetiby explicitly including them in
estimates of seismic performance, this role is lisleft to ad hoc safety factors, or, at
best, standardized dispersion values that oftenesas placeholders. Still, seismic
performance is heavily influenced by both aleat@arydomness, e.g. due to natural ground
motion record variability, and epistemic uncertginbwing to modeling assumptions,
omissions or errors. While the first can be easgifimated by analyzing a given structure



under multiple ground motion records, e.g via inoeatal dynamic analysis (IDA, [2]),
estimating the epistemic uncertainty remains kelgkplored issue.

Recently, several researchers have proposed agplgionlinear dynamic analysis

combined with Monte Carlo simulation to quantifyethncertainty for structural models
with non-deterministic parameters. For examplerrb§3] actually proposes a method to
propagate the uncertainty from model parametesrtactural behavior using first-order-
second-moment (FOSM) principles verified throughntéoCarlo to evaluate the collapse
capacity uncertainty. As a performance improvemeatin Hypercube Sampling (LHS)

[4] has also been proposed instead of classic mmeEmpling. Kazantzi et al. [5] used
Monte Carlo with LHS to incorporate uncertaintyorgteel frame fragility curves. Liel et

al. [6] used IDA with Monte Carlo and FOSM coupledth a response surface
approximation method to evaluate the collapse waicgy of several reinforced-concrete
buildings. On a similar track, Dolsek [7] and Vartsikos & Fragiadakis [8] have

proposed using Monte Carlo with efficient LHS orAlb achieve the same goal.

However, any practical application of the above Hb#Sed methodologies is severely
restricted due to two important reasons. The fggiur inherent inability to determine in
advance the required number of observations. Duleetmature of LHS, the entire sample
has to be decidea priori. While for typical random sampling we can stop siraulation

at will, before examining the entire sample, dogwyfor LHS is not possible unless we
want to risk a biased estimate. Similarly, if aftee end of the simulation we realize that
we need more observations, we cannot easily réngsexisting ones by arbitrarily adding
to them; the end product will typically not be aoper latin hypercube design. In other
words, we are limited by our initial knowledge betproblem to be able to select a proper
sample size, which may or may not be correct orfiteetry and often leads to repeated
analyses. The second reason is the disproportionaetease in the number of analyses
when dealing with many random variables. It mayobee prohibitively expensive to
determine the influence of multiple random paramsgteas the sample size rises
disproportionately. This is what has lead all eathgmpts [6—8] to limit themselves to just
a handful of parameters.

To overcome these important limitations, we wilbnganize the application of Monte
Carlo with LHS on IDA by performing together the deb and record sampling and using
incremental sample sizes that have been carefelbcted to allow full reuse of the earlier
runs performed. Thus, we propose an efficient upgr® the original approach that is
applicable to large models with hundreds of randamniables and without any need of pre-
determining sample sizes in any way.

3. INCREMENTAL DYNAMIC ANALYSIS

Incremental Dynamic Analysis (IDA) is a powerfuladysis method that offers thorough
seismic demand and capacity prediction capabillly It involves performing a series of
nonlinear dynamic analyses under a multiply-scadede of ground motion records,
selecting proper Engineering Demand Parameters gEDP characterize the structural
response and an Intensity Measure (IM), e.g. thed&Pwped first-mode spectral
acceleration,S(T1,5%), to represent the seismic intensity. The tesafe presented as
curves of EDP versus IM for each recoFdg 1a). These can be further summarized into
the 16,50,84% fractile IDA curves by estimating tlespective percentile values given a



range of IM or EDP values. Appropriate limit-states be defined by setting limits on the
EDPs. The probabilistic distribution of limit-stat@pacities can be easily estimated, e.g.
for limiting values of the maximum interstory drifty reading off the median and the
dispersion of the require®, capacity fromFig. 1b. Such results combined with
probabilistic seismic hazard analysis [2] allow #&imation of mean annual frequencies
(MAFs) of exceeding the limit-states, thus offeriagdirect characterization of seismic
performance. Nevertheless, IDA comes at a condtest, even for simple structures,
necessitating the use of multiple nonlinear dynaamalyses that are usually beyond the
abilities and the computational resources of theraye practicing engineer. Therefore,
wherever IDA is involved, searching for an effidi@mplementation is always desirable.
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Fig. 1 (a) Forty IDA curves and (b) their summarization into 16,50,84% fractile curves

4. INCREMENTAL RECORDWISE LHS

To mitigate the issues related to the typical aapion of LHS on IDA, we propose using
the same two fundamental procedures but essentiatlgfine the way that they are
implemented by incorporating two important chandésst, latin hypercube sampling is
applied incrementally by starting with a small sénghat is doubled successively until
adequate accuracy has been achieved. This is peth@mpnly way that one can reuse the
results of a previous LHS design, since doublirgdize allows a simple way to insert new
observations within the existing sample while mamnhg all the properties and
advantages of LHS. Thus, by comparing the convesen the IDA results in successive
generations of the LHS design, the development otenal stopping rule becomes
possible. This essentially offers an intuitive waydetermine a reasonable sample size,
minimizing the waste of runs over repeated trieghar (equally wasteful) tendency to
overestimate the size to “get it right” in one sté&gtually, the proposed amendment is
simple enough that it has probably already appeiaréde literature although the authors
have not been able to find a relevant publicatien $till, the use of LHS is so extensive
that it is reasonable to surmise that somethingaimmust have already appeared.

Furthermore, by taking advantage of the fact tiaA lis itself a sampling process at
equiprobable points (or records), we propose this is performed simultaneously on the
structural properties and on the ground motion nadszolnstead of maintaining the same
properties for a given model realization over atirerground-motion record suite, model
parameter sampling is performed on a record-byrcet@sis, efficiently expanding the



number of observations without increasing the nunabaonlinear dynamic analyses. As
a further bonus, the incident angle of the recoay mso be varied to allow for including
its effect as well. If we need more observatiorantthe records available, the records can
be simply recycled, either with the same or a déifé incident angle. In the customary
application of such a procedure, each model raaizavould be subject to IDA for the
entire record suite, multiplying the number of noe&ar dynamic analyses by a factor of 20
— 60. By combining the innovations presented weeh&wmed iLHS, an efficient
algorithm that is applicable to large models witmtreds of random variables [9].

5. EXAMPLE APPLICATION
5.1 Mode description

The structure selected is a nine-story steel momesigting frame with a single-story
basement that has been designed for Los Angeldswiing the 1997 NEHRP (National
Earthquake Hazard Reduction Program) provisions]. [AL centerline model with
nonlinear beam-column connections was formed u€ipgnSees. It allows for plastic
hinge formation at the beam ends while the coluamesassumed to remain elastic. The
structural model also includes Aeffects while the internal gravity frames have rbee
directly incorporated. The fundamental period of teference frame i$; = 2,35s and
accounts for approximately 84% of the total massseltially this is a first-mode
dominated structure that still allows for some #enty to higher modes.

The beam-hinges are modeled as rotational sprintys avquadrilinear moment-rotation
backbonekig. 2) based on the modified Ibarra-Krawinkler deteriimra model [3,10]. The
backbone curve of this model (sEmy. 2a) is defined based on the elastic stiffnEgf
the component, its pre-capping plastic rotatfigrihe post-capping plastic rotatidh. a
residual strengtV, that is expressed as a function of the yield gtirekly and an ultimate
rotation capacityt,. The same model is able to simulate up to 4 manfesyclic
deterioration (se€&ig. 2b). Lignos and Krawinkler [11] calibrated the hyst@r response
of this model with the deduced moment rotation tr@fship of more than 300 tests
included in a database for deterioration modelihgteel components. The deterioration
model parameters are estimated based on multigaregression relationshipgig. 3
shows the cumulative distribution functionségfand g for steel beams with and without
Reduced Beam Sections (RBS). Lognormal distribstizare found to fit the experimental
data relatively well based on a Kolmogorov-Smirtest.

In order to evaluate the effect of uncertaintieslmn seismic performance of the structure
we chose to vary the beam-hinge backbones accortinghe fitted probabilistic
distributions of their parameters, as shownFig. 3. The hinges at the end of each
individual beam were assumed to be perfectly cateel Table 1 summarizes the
correlations between deterioration parameters asguim this study. Note that these
correlations are based on actual experimental aatdiscussed earlier. Within the same
beam, all parameters are independent except th&oms 6, and 6,c that share an 80%
correlation coefficient. Among different beams myagiven story, a 70% correlation was
employed for each parameter. Among beams in diifestories only 50% correlation was
used.



Basic _
Strength Det. =

LTI

=
Moment M
—
R
]
-—\_‘_‘—__‘--
---—“-——_

| ding
| Ifjmﬂ. Det.

Moment M
rd
=
]
I
2
=t
]
o=
_—h.-—--_""-—‘
—__--"‘—--‘
—__-_"‘—-—-—-_
--—“_‘-———_

W%lﬁ'.\ﬁ

o 0 N —
P pe < Post Cap. — ;11 i
N Strength Det. —=

~
~
5] 5] ) 8 ‘
¥ ¢ Rotation 6 u Rotation
() (b)

Fig. 2 Monotonic and cyclic moment rotation relationship of the modified Ibarra-
Krawinkler deterioration model [ 3,10]
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Fig. 3 Cumulative distribution functions (CDFs) for (a) 8, and (b) Gy [ 10]
Plastic Pre-cap | Post-cap | Cumulative

Rotations 0, (% A

Pre-cap 6, 1 0,69 0,44

Post-cap fpc 0,69 1 0,67

Cumulative A 0,44 0,67 1

Table 1. Correlation coefficients for deterioration parameters of non-RBS steel beams [ 13]

5.2 lllustrativeresults

Having a total of 270 random variables and 60 ‘toady” ground motion records (i.e.
without any soft soil or directivity issues), tHeHS algorithm is applied with a starting
size of 10 and it is allowed to run to a total ajéherations, up to a maximum sample size
of 1280. There are 270-(270-1)/2=36315 correlatmefficients to match, thus some error
is bound to appear when having only a few obsermatiThanks to the algorithm used to



impose correlation [14], this error can be seletyivminimized for any variables that are
deemed to be important. Therefore, correlationearly perfectly captured for the most
influential variables, i.eMy and6@, leading to an overall accurate estimation.

The simulation was run in parallel [15] using 5 #@n IV single-core processors for an
overall running time of 10hrs. Actually the 1280sebvations are far too many. The
median and the dispersigh(standard deviation of the log of the data)Spto achieve a
certain response value become fairly stable forctmaly all EDPs after only 4-5
generations with 160—-320 samples, respectively. rEisalts seem to only mildly differ
among the global or local EDPs considered, e.grdabedrift 6,00 and maximum interstory
drift fmax Or the individual-story driftsé,.

In comparison to a typical analysis consideringyotile mean-parameter model, the
dispersion is found to be similaFif. 4b) but the mean response itself has a prominent
bias, which, due to the details of the correlatiaposed, appears to be a conservative one
(Fig. 4a). It is also possible to determine the influendeeach random variable by
measuring its correlation with the estimated respowalues [7]. Then, we find that, at
least forfmax the most influential variables in the lower, ngaid, limit-states @max =
0,02) mainly involve thej, andfy. variables at a meager 8-10% correlation. For lmighe
limit-states, closer to collapse, we slowly starsee the effect of the yield strength in the
middle stories, with the correlation progressiveling up to the order of 22%. Such
information can be extracted to any detail andefach response type and structural state
desired.
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Fig. 4 iLHS versus the mean model: (a) comparison of median IDAs and (b) comparison of
S,-capacity dispersion

6. CONCLUSIONS

An efficient method has been presented for acdyrdetermining the seismic demand and
capacity uncertainty of steel moment-resisting arby combining realistic probabilistic

modeling together with innovative analysis and damgptechniques. The model sample is
formed using appropriate deterioration parameters steel components based on a
recently developed database of experimental resdt®cessing is based on the
incremental Latin Hypercube Sampling procedure ihatpable of efficiently estimating

the effect of model parameter uncertainties onsgtiemic performance of structures. It



builds upon the existing paradigm of incrementahatyic analysis with latin hypercube
sampling and further improves it by resolving threljlem of sample size determination
and by increasing its efficiency by a factor of &0least. It is a simple technique that is
amenable to parallelization and automated apptinatihile it allows excellent scalability,
being applicable to realistic large-scale problefiise methodology presented can thus
estimate the seismic performance uncertainty @l st®@ment-resisting frames and provide
reliable values where formerly only mere placehdeere available.
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EKTIMHXH THX EINIXTHMIKHX ABEBAIOTHTAX XTH XEIXMIKH
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H axpiffig extiunom ng GEIGUIKNAG EMTEAECTIKOTNTOG TMOV UETOAMKAV KOTUGKELADV
amortel a&OmeTH TANPOPOPNOT CYETIKA LE TNV EMPPON NG ATEAODS YVAOONG TOV
TPOYUATIKAOV SOUIKODV TOPAUETP®V. ME VT TO GKOTO, EXLYELPELTAL 1) TOGOTIKOTOINGT| TNG
afefardtmrag yoo €va peTOAMKO TAOIGWOKO KTIPlO LE TO GUVOLOGUO LG GEPAG
koawvotoptdv. Katoapyds, ot Bocikég mopaUETPOL TOV TPOGOUOIDUATOS TEPLYPAPOVTOL
TNPOS TOAVOTIKA, GUUTEPIAAUPAVOUEVNG TG CLGYETION €VTOG KAOE HEAOVG, OAAG Kol
petald TtV peEA®V, oOUO®VL HE U TPOGEATO AVETTUYUEVY] PAOT TEPALOTIKOV
dgdopévov  yo TV mpocopoimon petaAlkdv  otoyeimv. H avdAivorn  duvapikng
avtiotaong (IDA) spoapudletor, yioo vo ektiunbei pe oakpifsio M cLOUTEPLPOPAE TOV
TPOCOUOIDUOTOS GE KAOE CUVOLACUO TOV TOPAUETPOV UE TNV EKTELECT UM YPOUUUIKOV
SVVOIK®DY  AVOADGE®Y VIO TOAAATAG EMLTAYLVGLOYPUENUOTH. Xpnolpomoteital £vag
amodoTikdg adyopiOpog Movie Kdpho Paciopévog o€ avEnpatikr  dstypotoAnyio
AoTIVIKOO VITEPKVPOL, Yo v LetadoBovv ot afefatdTnTeS 0td TO GHVOAO TOV TAPAUETPOV
ot oewokn omaitmon Kot wkavoétto. Koatd avtév tov 1pdmo, emrvyydvetor m
TOGOTIKOTOINGT NG emdpaons TV afEPfaimv TOPAUETP®Y TOL TPOGOUOLDUATOS OTN
GEIGUIKT GLUTEPLPOPE TOV EVVIOMPOPOL KTIPIOV, TAPEXOVTG £TGL [0 LOVAOTKT HLEBOOO
EKTIUNONG TOV  TpayUHoTikoD dwbéotponv  meplBmpiov 0GEAAENG 7OV VLEAPYEL OF
OTOLUONTTOTE UETAAAIKT) TAOIGIOKY| KOTOLGKEDT).



