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1. ABSTRACT

In this work the elastoplastic analysis of frameuaures with hardening behavior and
axial force—bending moment interaction is examinedhe framework of mathematical
programming. The maximum load carrying capacitytleé structure is determined by
solving an optimization problem with linear equiliom, compatibility and yield
constraints together with a complementarity comstréhat is of discrete rather than
continuous nature. This is difficult to handle nuita&lly and can be circumvented by
several techniques, two of which are the penalbgtion and relaxation approach. These
two methods are implemented for the analysis afl Stames for elastic-perfectly plastic
and hardening behavior under pure bending and fotigd-moment interaction. Numerical
results are presented that reveal the inherentctaistics of the two methods in overall
favoring the penalty method.

2. INTRODUCTION

Limit analysis has been extensively used for thesteplastic analysis and design of
structures. This aims at determining the collapsel land collapse mechanism that lead to
a more efficient design following ultimate limitas¢ design codes. Utilizing the potential
of mathematical programming elastic-perfectly ptasbehavior is fully explored.
Furthermore, the work of Maier and his co-workets?[3], has offered a whole new
perspective at treating elastoplastic analysis Iprob obeying more general constitutive
laws. Holonomic and non-holonomic elastoplasticlysia problems based on piecewise
linear constitutive laws were formulated as quadnatogramming problems or restricted
basis linear programming problems or parametriedincomplementarity problems. The
combination of mathematical programming and linmialgsis approach with multilinear



constitutive laws has led to the formation of artiropzation problem with equality

constraints and a linear complementarity constrdiat provides maximum load factor,
stresses, displacements and strains at membersendibaneously [4,5,6,7]. This problem
is of discrete nature due to the presence of thmptementarity constraint and is
circumvented by means of various methods [8]. Tihedd the present work is to compare
two of the proposed methods for solving the afomgiveed nonconvex optimization
problem and to examine their robustness and efiftgiein calculating the maximum

collapse load for hardening behavior that accodmtshe interaction of axial load and
bending moment.

3. MATHEMATICAL MODEL AND GOVERNING RELATIONS

Plane frames are considered that consist of strgigbmatic elements subjected only to
nodal loading for reasons of simplicity. Frame thspments are assumed small enough so
that the equilibrium equations refer to the initimddeformed configuration. It is also
assumed that the structure consistaalfelements and has degrees of freedom, while

is the number of yield hyperplanes at each eleraedt The equilibrium of every element

is described in terms of three independent stressltants, namely axial forces § and

bending momentg,) at the “start” nod¢ and bending momens() at the “end” nodé, as

shown in Fig. la. Equilibrium at each element i$omed and the six end forces are
expressed in terms of the three independent stessttants of the element. The structural
equilibrium relationship [4,5] is then establisresd

B-s=a f Q)
where B is the (fx3nel) structural equilibrium matrixs is a @nelx1) vector for all
primary stress resultant,is a scalar load factor ards a ofx1) matrix of nodal loading.
Compatibility which relates the member deformatignto the nodal displacements
(Fig.1b) follows a congruent relation for the wheteucture and is given by the following
linear relation:

q=B"-u 2)
whereq is the Bnelx1) strain vector and is the (ifx1) nodal displacement vector.
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Fig. 1: Frame element i (a) the three independent stress resultants, (b) the corresponding
generalized displacements.

The constitutive law decomposes the strain to astiel and plastic part, as depicted in
Fig.2. For the entire structure this is expressethb relation:

q=e+p (3)
whereq is the total strairgis the elastic and the plastic strain.
The elastic branch is fully described by the relati

S=S ¢ 4)
where S is the Bnelx3ne) stiffness matrix of the structure. The structupdastic
deformationg are defined for holonomic assumption as follows:



p=N-z ®)
whereN is the @nelx2yne) matrix of all unit normals to the yield hyperpé&mandz is the
(2ynelx1) vector of plastic multipliers. For the yield cotons a piecewise linearized
locus is adopted for detection of plastic hingerfation at member ends accounting for
axial-bending interaction [4,5]. This constitutesiascribed polygon to the nonlinear yield
condition and is an advantageous and safe apprtvmia limit analysis as it maintains
the linearity of the constraint. For steel struetuthat are examined herein, a hexagonal
piecewise linear yield locus is used as presenteBig. 3 [4,7]. Positive and negative
properties of the yield condition are identical aeduction of the pure bending capacity
occurs for axial force greater than a fractigr(hereinr, considered as 0,15). Moreover,
isotropic hardening behavior is considered, notgimg though with Bauschinger effect.
The set of hardening yield functions for the wheteucture is collected in vectaw
(2ynelx1)as follows:

W =-N"-s+ H z+ >0 (6)
where H is the Rynelx2yne) hardening matrix,z is the Qynelx1) vector of plastic
multipliers andr is the @ynelx1) vector of yield limits. It is also noted thatis the
inclination angle defined in Fig. 3ah,is the tangent of the stress-strain diagram (Big.3

r=1+0,15 tary, a = P j=1,...,6, wherej is the corresponding number of the yield

cj
hyperplanep. is the arbitrarily assumed critical plastic stramdp; are the actual critical
plastic strain values.
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Fig. 2: Strain decomposition into elastic and plastic components.
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Fig. 3: (a) Yield and failure hyperplanes for axial force and bending interaction,
(b) Corresponding hardening behavior.

4. FORMULATION OF LIMIT ANALYSISPROBLEM AND ALGORITHMS

Holonomic behavior is acceptable provided that tnairs reversal (or "local” unloading)
occurs in the structure during the loading processr proportional loading and
monotonically increasing loads, local unloadingeharoccurs and, when it occurs, it



seldom influences significantly the overall behayviparticularly for hardening structures
[1]. The formulation of the holonomic problem castsiof three basic notions, namely
statics, kinematics and constitutive relations anéxpressed within a Lagrangian small
displacement regime by relations (1)-(6) togethéth vihe following complementarity
condition:

w-z=0, w=0 , 20 (7)

The latter prohibits simultaneous activation ofspilzity and unloading. More specifically,
the complementarity condition indicates that whentield functionw; is activated \{;=0),
the corresponding plastic multipligrshould be greater than 0. Similarly, when thedyiel
hyperplang is inactive {>0), the corresponding plastic multiplia=0, namely no plastic
flow occurs. Equations (1)-(7) can be simplifiedreyaining the variables u, z so that a
Mixed Complementarity Problem (MCP) is formulaté&tiis is equivalently converted into
the following optimization problem the solutionwhich provides simultaneously the load
multiplier a, stresses, displacements and plastic multiplierg [4]:

maximize a
subject to B-s—a f=0
S'"ssB-w N =0
w=-N"-s+ H z+ >0, 20, W-=z=0

Mathematically this is a honconvex optimizationkgeon that is known as a Mathematical
Programming with  Equilibrium Constraints (MPEC) plem including the
complementarity constraint that acts as a switat iarof discrete rather than continuous
nature. This disjunctive constraint is difficult kandle numerically leading to numerical
instabilities due to lack of convexity and smootdseDespite all these inherent difficulties,
the MPEC problem (8) can be solved by convertingnio a standard, though still
nonconvex, nonlinear programming (NLP) problem byitably treating the
complementarity condition. Several techniques haeen proposed such as penalty
function formulation, relaxation method, active seéentification approach, sequential
guadratic programming (SQP), interior point methadsd others [8]. Herein, the penalty
function approach (penalization) and relaxation rapph (smoothing function) are
investigated with respect to robustness and effcgie The basic idea is to circumvent the
complementarity constraint by a parametric refoatiah, so that as the governing
parameter increases (or decreases) the originapleamentarity condition is approached.
According to penalization method, the complemetytaierm appropriately penalized is
moved to the objective function [5] and the problemmulation is as follows:

maximize a-p-wW-z

subject to B-s—a f=0
S'"ssB-w N =0
w=-N"-s+ H z >0, 20

For the smoothing method, the objective function #me constraints are kept in their
initial linear form and the complementarity consitas replaced with a nonlinear function
with an equivalent behavior [5]. Although there=siin literature a great number of such
functions, herein the well known Fischer-Burmeidterction is adopted given by:

o.(zw) =57+ W=\ e fr2e) (10)

The parameter is iteratively decreased to satisfy the desirabi@plementarity tolerance.
It is worth noting that the above two formulatiare sensitive to the initial valuesoand

(8)

(9)



¢ and their subsequent increase and decrease reghecliypical starting values gfande
are between 0,1 and 1 with an update=ifOp ande=¢/10 after each NLP solution until an
appropriate convergence tolerance is reachvzi{ 10%).

5. PLASTIC ANALYSISWITH MATHEMATICAL PROGRAMMING

The limit analysis problem described in relatio®% &nd (10) has been implemented in
MATLAB code for the analysis of two steel frameustiures (Fig. 4) [6,10] having
material properties and geometrical characterigiiesented in Table 1. The aim is to test
the efficiency of the penalty function and relagatiapproaches for the cases of elastic-
perfectly plastic and hardening behavior under poeeding and axial force-moment
interaction. In Table 2 all the results are preséntirstly, it is noted that smoothing
approach is more sensitive and falls short in ifficy and robustness as compared to
penalization method. Although smoothing method gjigegreater value of maximum load
factor a for frame 2, the stress distribution to elementiseseems to be limited and
consequently fewer plastic hinges are formed whighmore heavily damaged. It is also
observed that frame 1 collapses at greater valuasar the case of pure bending than for
the case of interaction when same material behasiassumed, while frame 2 presents
almost the same values affor both cases. Moreover, it is noted that under same
conditions i.e. pure bending or combined stresgexyrporating hardening offers, as
expected, greater values of maximum load faet@s compared to elastic-perfectly plastic
behavior for both frames.
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Fig. 4: Frames under examination (a) frame 1, (b) frame 2.

Material Properties & FRAME 1 FRAME 2
e Columns Beams Bracings Columns Beams Bracings
Yield limit of axial force 81y 37365 kN 6693 kN 669.3 kN 37365 kN 669.3 kKN 669.3 kN
Ultimate limit of axial force 81u 5604.8 kN BO3.2 kN 803.2 kN 5604.8 kKN 803.2 kN 803.2 kN
Yield limit of bending moment 52y 602.1 kNm 51.8 kNm 518 kNm 602.1 kNm 51.8 kNm 51.8 kNm
Ultimate limit of bending moment 82s 903.1 kiNm 62.2 klNm 62.2 kNm 903.1 kNm 62.2 kNm 62.2 kNm
Hardening # 200 kKNm 40 kNm 40 kNm 200 kKINm 20 kKINm 20 kKINm
Number of elements nel 21 45
Number of nodes nnodes 14 34
Number of degrees of freedom »f 36 a0
Modulus of elasticity £ 2-108 kN/m? 2-108 kN/m?

Table 1: Properties of frames under examination.




-% Elastic-perfectly plastic |  Elastic-perfectly plastic | Penalization with hardening Penalization with hardening Smoothing with hardening
o) (pure bending) (interaction) (pure bending) (interaction) (interaction)
-
c o FRAME 1
S O
EB 1244kN | 122kN | 135,4 kN | 13L4kN | 124,9 kN
éé v FRAME 2
828kN | B41kN | 9L8kN | 875kN | 112,9 kN

Table 2: Maximum load factor a for all limit analysis cases.

The aforementioned analysis cases are also comtdteincreasingly applied load to
determine the capacity curve of the structure. m@imum load factom versus upper-
storey horizontal displacementis depicted in Fig.5. The conclusions generallyncide
with those of limit analysis for single step loagliand in addition, it is more evident that
the assumption of elastic-perfectly plastic behavieads to responses with great
displacements and consequently great values oflidudn Fig. 6, for hardening behavior
consideration and for penalty function approach fiastic hinge disposition, the
corresponding stress conditions of element stadls exs well as the deformed shape of
frames are displayed
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Fig. 5: Responses of (a) frame 1 and (b) frame 2.
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Fig. 6: Plastic hinge disposition and corresponding stress conditions of element start ends for
penalization approach at (a) frame 1 and (b) frame 2.



6. CONCLUDING REMARKS

In this work, limit analysis of frame structureshéiting hardening behavior is formulated
as a mixed complementarity problem of mathemapoagramming. The determination of
maximum load is established by solving an optimaraproblem with complementarity
constraint. This is appropriately treated with eithpenalty function formulation or
relaxation approach via a smoothing function. Thesthods are implemented for the
analysis of two steel structures for the casesladtie-perfectly plastic and hardening
behavior under pure bending and axial force-bendimggnent interaction. The results
proved that penalization method is more robust 8ranothing which is more sensitive in
setting the initial values, the bounds and the patar that frequently needs to be altered
in the course of the procedure to achieve accuestdts.
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ITEPIAHYH

H epyocio avt) mpaypatevetor 1o OEpa ™G €MUGTOTAACTIKNG OVAAVLONG HE YPNOM
pefddv pabnuatikod mTpoypappaticpod. O TPosdoPIGHOS TOL POPTIOV KATAPPELGNS
eMTLYYAveTal PéGO omd TV emilvomn evoc TPoPANUATOC BEATIGTOTOINONG UE YPALULIKOVS
TEPLOPIGHLOVS 100ppoTing, cLUPLPAGTOD TOPALOPEOCEMVY, dLOPPONG Kol EvaV TEPLOPICUO
CUUTANPOUATIKOTNTOC, O 0TTOI0G £XEL OL0KPLTO YOPAUKTAPO KOl SOVGKOAEVEL TNV OPLOUNTIKY
emilvon, evad petatpénet to TpdPAnua oe un kupto. To eumoddio avtd pmopet va apbel pe
xpon dpopwv pebddwv, 0o ek TV omoimV gival 1 EICAYOYH GLVAPTNONG TOWNG N
cuvapmoewv sEopdivvong. Ot pébodor avtéc epappolovior yw v avdivoern ovo
UETAAMKGOV TAAIGIOV Yo S1dpopeg BEMPNGEIS GVUTEPLPOPAS VAIKOD Kol Y10, SAPOPOLS
ouvovaopovs dpdoewv. Ta amoteléouata divovv mpofdadiopa otn néBodo Tovng, evd ot
GUVOPTNCELS EEOLAAVVOTNG TPOKVTTOVY GTLOVTIKA vaicOnteg kal aoTadeis.



