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1. ABSTRACT  
 
In this work the elastoplastic analysis of frame structures with hardening behavior and 
axial force–bending moment interaction is examined in the framework of mathematical 
programming. The maximum load carrying capacity of the structure is determined by 
solving an optimization problem with linear equilibrium, compatibility and yield 
constraints together with a complementarity constraint that is of discrete rather than 
continuous nature. This is difficult to handle numerically and can be circumvented by 
several techniques, two of which are the penalty function and relaxation approach. These 
two methods are implemented for the analysis of steel frames for elastic-perfectly plastic 
and hardening behavior under pure bending and axial force-moment interaction. Numerical 
results are presented that reveal the inherent characteristics of the two methods in overall 
favoring the penalty method. 
 
 
2. INTRODUCTION  
 
Limit analysis has been extensively used for the elastoplastic analysis and design of 
structures. This aims at determining the collapse load and collapse mechanism that lead to 
a more efficient design following ultimate limit state design codes. Utilizing the potential 
of mathematical programming elastic-perfectly plastic behavior is fully explored. 
Furthermore, the work of Maier and his co-workers [1,2,3], has offered a whole new 
perspective at treating elastoplastic analysis problems obeying more general constitutive 
laws. Holonomic and non-holonomic elastoplastic analysis problems based on piecewise 
linear constitutive laws were formulated as quadratic programming problems or restricted 
basis linear programming problems or parametric linear complementarity problems. The 
combination of mathematical programming and limit analysis approach with multilinear 



constitutive laws has led to the formation of an optimization problem with equality 
constraints and a linear complementarity constraint that provides maximum load factor, 
stresses, displacements and strains at member ends simultaneously [4,5,6,7]. This problem 
is of discrete nature due to the presence of the complementarity constraint and is 
circumvented by means of various methods [8]. The aim of the present work is to compare 
two of the proposed methods for solving the aforementioned nonconvex optimization 
problem and to examine their robustness and efficiency in calculating the maximum 
collapse load for hardening behavior that accounts for the interaction of axial load and 
bending moment. 

 
 

3. MATHEMATICAL MODEL AND GOVERNING RELATIONS 
 
Plane frames are considered that consist of straight prismatic elements subjected only to 
nodal loading for reasons of simplicity. Frame displacements are assumed small enough so 
that the equilibrium equations refer to the initial undeformed configuration. It is also 
assumed that the structure consists of nel elements and has nf degrees of freedom, while y 
is the number of yield hyperplanes at each element end. The equilibrium of every element 
is described in terms of three independent stress resultants, namely axial force (1

is ) and 

bending moment (2
is ) at the “start” node j and bending moment (3

is ) at the “end” node k, as 

shown in Fig. 1a. Equilibrium at each element is enforced and the six end forces are 
expressed in terms of the three independent stress resultants of the element. The structural 
equilibrium relationship [4,5] is then established as: 
 B s a f⋅ = ⋅  (1) 
where B is the (nf×3nel) structural equilibrium matrix, s is a (3nel×1) vector for all 
primary stress resultants, a is a scalar load factor and f is a (nf×1) matrix of nodal loading. 
Compatibility which relates the member deformation iq  to the nodal displacements iu  
(Fig.1b) follows a congruent relation for the whole structure and is given by the following 
linear relation: 
 Tq B u= ⋅  (2) 
where q is the (3nel×1) strain vector and u is the (nf×1) nodal displacement vector. 
 

 
Fig. 1: Frame element i (a) the three independent stress resultants, (b) the corresponding 

generalized displacements. 
 
The constitutive law decomposes the strain to an elastic and plastic part, as depicted in 
Fig.2. For the entire structure this is expressed by the relation: 
 q e p= +  (3) 
where q is the total strain, e is the elastic and p the plastic strain.  
The elastic branch is fully described by the relation: 
 s S e= ⋅  (4) 
where S is the (3nel×3nel) stiffness matrix of the structure. The structural plastic 
deformations p are defined for holonomic assumption as follows: 



 p N z= ⋅  (5) 
where N is the (3nel×2ynel) matrix of all unit normals to the yield hyperplanes and z is the  
(2ynel×1) vector of plastic multipliers. For the yield conditions a piecewise linearized 
locus is adopted for detection of plastic hinge formation at member ends accounting for 
axial-bending interaction [4,5]. This constitutes an inscribed polygon to the nonlinear yield 
condition and is an advantageous and safe approximation in limit analysis as it maintains 
the linearity of the constraint. For steel structures that are examined herein, a hexagonal 
piecewise linear yield locus is used as presented in Fig. 3 [4,7]. Positive and negative 
properties of the yield condition are identical and reduction of the pure bending capacity 
occurs for axial force greater than a fraction rb (herein rb considered as 0,15). Moreover, 
isotropic hardening behavior is considered, not complying though with Bauschinger effect. 
The set of hardening yield functions for the whole structure is collected in vector w 

(2ynel×1) as follows: 
 0Tw N s H z r= − ⋅ + ⋅ + ≥  (6) 

where H is the (2ynel×2ynel) hardening matrix, z is the (2ynel×1) vector of plastic 
multipliers and r is the (2ynel×1) vector of yield limits. It is also noted that γ is the 
inclination angle defined in Fig. 3a , h is the tangent of the stress-strain diagram (Fig.3b), 

1 0,15 tanτ γ= + ⋅ , c
j

cj

p
a

p
=  j=1,…,6, where j is the corresponding number of the yield 

hyperplane, pc is the arbitrarily assumed critical plastic strain and pcj are the actual critical 
plastic strain values. 

 
Fig. 2: Strain decomposition into elastic and plastic components. 

 

 
Fig. 3: (α) Yield and failure hyperplanes for axial force and bending interaction, 

(b) Corresponding hardening behavior. 
 
 
4. FORMULATION OF LIMIT ANALYSIS PROBLEM AND ALGORITHMS 
 
Holonomic behavior is acceptable provided that no strain reversal (or "local" unloading) 
occurs in the structure during the loading process. For proportional loading and 
monotonically increasing loads, local unloading rarely occurs and, when it occurs, it 



seldom influences significantly the overall behavior, particularly for hardening structures 
[1]. The formulation of the holonomic problem consists of three basic notions, namely 
statics, kinematics and constitutive relations and is expressed within a Lagrangian small 
displacement regime by relations (1)-(6) together with the following complementarity 
condition: 

 0, 0 , 0Tw z w z⋅ = ≥ ≥  (7) 

The latter prohibits simultaneous activation of plasticity and unloading. More specifically, 
the complementarity condition indicates that when the yield function wj is activated (wj=0), 
the corresponding plastic multiplier zj should be greater than 0. Similarly, when the yield 
hyperplane j is inactive (wj>0), the corresponding plastic multiplier zj=0, namely no plastic 
flow occurs. Equations (1)-(7) can be simplified by retaining the variables s, u, z so that a 
Mixed Complementarity Problem (MCP) is formulated. This is equivalently converted into 
the following optimization problem the solution of which provides simultaneously the load 
multiplier a, stresses s, displacements u and plastic multipliers z [4]: 

 1

maximize

subject to 0

0

0, 0, 0

T

T T

a

B s a f

S s B u N z

w N s H z r z w z

−


⋅ − ⋅ = 


⋅ − ⋅ + ⋅ = 
= − ⋅ + ⋅ + ≥ ≥ ⋅ = 

 (8) 

Mathematically this is a nonconvex optimization problem that is known as a Mathematical 
Programming with Equilibrium Constraints (MPEC) problem including the 
complementarity constraint that acts as a switch and is of discrete rather than continuous 
nature. This disjunctive constraint is difficult to handle numerically leading to numerical 
instabilities due to lack of convexity and smoothness. Despite all these inherent difficulties, 
the MPEC problem (8) can be solved by converting it into a standard, though still 
nonconvex, nonlinear programming (NLP) problem by suitably treating the 
complementarity condition. Several techniques have been proposed such as penalty 
function formulation, relaxation method, active set identification approach, sequential 
quadratic programming (SQP), interior point methods and others [8]. Herein, the penalty 
function approach (penalization) and relaxation approach (smoothing function) are 
investigated with respect to robustness and efficiency. The basic idea is to circumvent the 
complementarity constraint by a parametric reformulation, so that as the governing 
parameter increases (or decreases) the original complementarity condition is approached. 
According to penalization method, the complementarity term appropriately penalized is 
moved to the objective function [5] and the problem formulation is as follows: 

 
1

maximize

subject to 0

0

0, 0

T

T

T

a w z

B s a f

S s B u N z

w N s H z r z

ρ

−
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

⋅ − ⋅ = 


⋅ − ⋅ + ⋅ = 
= − ⋅ + ⋅ + ≥ ≥ 

 (9) 

For the smoothing method, the objective function and the constraints are kept in their 
initial linear form and the complementarity constraint is replaced with a nonlinear function 
with an equivalent behavior [5]. Although there exists in literature a great number of such 
functions, herein the well known Fischer-Burmeister function is adopted given by: 

 ( ) ( )2 2 21
, 2

2j j j j j jz w z w z w
ε

ϕ ε= ⋅ + − + + ⋅  (10) 

The parameter ε is iteratively decreased to satisfy the desirable complementarity tolerance. 
It is worth noting that the above two formulations are sensitive to the initial values of ρ and 



ε and their subsequent increase and decrease respectively. Typical starting values of ρ and ε 
are between 0,1 and 1 with an update of ρ=10ρ and ε=ε/10 after each NLP solution until an 
appropriate convergence tolerance is reached (wTz ≤ 10-4). 

 
 

5. PLASTIC ANALYSIS WITH MATHEMATICAL PROGRAMMING 
 

The limit analysis problem described in relations (9) and (10) has been implemented in 
MATLAB code for the analysis of two steel frame structures (Fig. 4) [6,10] having 
material properties and geometrical characteristics presented in Table 1. The aim is to test 
the efficiency of the penalty function and relaxation approaches for the cases of elastic-
perfectly plastic and hardening behavior under pure bending and axial force-moment 
interaction. In Table 2 all the results are presented. Firstly, it is noted that smoothing 
approach is more sensitive and falls short in efficiency and robustness as compared to 
penalization method. Although smoothing method gives a greater value of maximum load 
factor a for frame 2, the stress distribution to element ends seems to be limited and 
consequently fewer plastic hinges are formed which are more heavily damaged. It is also 
observed that frame 1 collapses at greater values of a for the case of pure bending than for 
the case of interaction when same material behavior is assumed, while frame 2 presents 
almost the same values of a for both cases. Moreover, it is noted that under the same 
conditions i.e. pure bending or combined stresses, incorporating hardening offers, as 
expected, greater values of maximum load factor α as compared to elastic-perfectly plastic 
behavior for both frames.  
 
 

 
 

 
 

 
 
 
 
 

 

Fig. 4: Frames under examination (α) frame 1, (b) frame 2. 
 

  
 

Table 1: Properties of frames under examination. 
 

 
 
 



 
 

Table 2: Maximum load factor a for all limit analysis cases.  
 

The aforementioned analysis cases are also conducted for increasingly applied load to 
determine the capacity curve of the structure. The maximum load factor a versus upper-
storey horizontal displacement u is depicted in Fig.5. The conclusions generally coincide 
with those of limit analysis for single step loading and in addition, it is more evident that 
the assumption of elastic-perfectly plastic behavior leads to responses with great 
displacements and consequently great values of ductility. In Fig. 6, for hardening behavior 
consideration and for penalty function approach the plastic hinge disposition, the 
corresponding stress conditions of element start ends as well as the deformed shape of 
frames are displayed  

 

 
 

Fig. 5: Responses of (a) frame 1 and (b) frame 2. 
 

 
 

 Fig. 6: Plastic hinge disposition and corresponding stress conditions of element start ends for 
penalization approach at (a) frame 1 and (b) frame 2. 
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6. CONCLUDING REMARKS 
 

In this work, limit analysis of frame structures exhibiting hardening behavior is formulated 
as a mixed complementarity problem of mathematical programming. The determination of 
maximum load is established by solving an optimization problem with complementarity 
constraint. This is appropriately treated with either penalty function formulation or 
relaxation approach via a smoothing function. These methods are implemented for the 
analysis of two steel structures for the cases of elastic-perfectly plastic and hardening 
behavior under pure bending and axial force-bending moment interaction. The results 
proved that penalization method is more robust than smoothing which is more sensitive in 
setting the initial values, the bounds and the parameter that frequently needs to be altered 
in the course of the procedure to achieve accurate results. 
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ΠΕΡΙΛΗΨΗ 
 
Η εργασία αυτή πραγµατεύεται το θέµα της ελαστοπλαστικής ανάλυσης µε χρήση 
µεθόδων µαθηµατικού προγραµµατισµού. Ο προσδιορισµός του φορτίου κατάρρευσης 
επιτυγχάνεται µέσα από την επίλυση ενός προβλήµατος βελτιστοποίησης µε γραµµικούς 
περιορισµούς ισορροπίας, συµβιβαστού παραµορφώσεων, διαρροής και έναν περιορισµό 
συµπληρωµατικότητας, ο οποίος έχει διακριτό χαρακτήρα και δυσκολεύει την αριθµητική 
επίλυση, ενώ µετατρέπει το πρόβληµα σε µη κυρτό. Το εµπόδιο αυτό µπορεί να αρθεί µε 
χρήση διάφορων µεθόδων, δύο εκ των οποίων είναι η εισαγωγή συνάρτησης ποινής ή 
συναρτήσεων εξοµάλυνσης. Οι µέθοδοι αυτές εφαρµόζονται για την ανάλυση δύο 
µεταλλικών πλαισίων για διάφορες θεωρήσεις συµπεριφοράς υλικού και για διάφορους 
συνδυασµούς δράσεων. Τα αποτελέσµατα δίνουν προβάδισµα στη µέθοδο ποινής, ενώ οι 
συναρτήσεις εξοµάλυνσης προκύπτουν σηµαντικά ευαίσθητες και ασταθείς. 


