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ABSTRACT

Recent events such as natural catastrophes orisemr@ttacks have highlighted the
necessity to ensure the structural integrity ofldings under an exceptional event.
According to the Eurocodes and some different otfaional design codes, the structural
integrity of civil engineering structures should &esured through appropriate measures
but, in most cases, no precise practical guidelamesow to achieve this goal are provided.
At Liége University, the robustness of building nfras is investigated with the final
objective to propose design requirements to meigdie risk of progressive collapse
considering the conventional scenario “loss of oo’ further to an unspecified event.
In particular, a complete analytical procedure Iesn developed for the verification of the
robustness of steel or composite plane frames.skke of simplicity, these first works
have been based on the assumption that the dyrdiaats linked to the column loss were
limited and could therefore be neglected. More mdgecomplementary works have been
carried out with the objective to address the dyinafiects. Besides that, the extension of
the static procedure to actual 3D frames is unalezstigation in Liege. The present paper
gives a global overview of the ongoing researcheshe field of robustness at Liege
University and, in particular, the global strateggning at deriving design requirements is
detailed.

1 ADOPTED STRATEGY

The studies performed at Liege University in theldfiof “robustness of structures” are
mainly dedicated to the exceptional scenario “lofsa column” in a steel or steel-concrete
composite building structure. The main objectivéoislerive guidelines for an appropriate
design of the structure for the considered scenar achieve this goal, simplified
analytical procedures are developed to predictrésponse of the structure further to a
column loss; as an outcome, the way on how eaclttatal parameter influences the
structural behaviour may be described. The presection describes the global research
strategy adopted by the authors.



The loss of a column can be associated to diffdsgr@s of exceptional events: explosion,
impact of a vehicle, fire... Under many of these gtiomal actions, dynamic effects may
play an important role. However, it is first assuaikat the column loss does not induce
dynamic effects; so, the investigations of thedtral response may be founded on static
approaches. A building structure losing a column ba divided in two main parts, as
illustrated inFig. 1:

- the directly affected part which represents thd péithe building which is directly
affected by the column loss, i.e. the beams, thénwos and the beam-to-column joints
which are just above the failing column and;

- the indirectly affected part which includes thetres the structure. The indirectly
affected part is affected by the loads developinidpinv the directly affected part; but
obviously, these forces are themselves influencgedhk response of the indirectly
affected part.

If a cut is realised in the structure at the topthef failing column (se€ig. 1), different
internal forces in the vertical direction are idged: (i) the shear load¥; andV; at the
extremities closed to the failing column, (ii) theial loadN,p in the column just above the
failing column and (iii) the axial loaN, in the failing column. The objective is to predic
the evolution of the vertical displacement of poiAt’ A, according toN,,, with due
account to the eventual membrane forces develapitige structure, in order to know the
requested ductility of the different structural ni®srs and to check the resistance of the
indirectly affected part loaded by additional lo&adsning from the directly affected part.
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Fig. 1. Representation of a frame losing a column and main definitions

In Fig. 2, the curve representing the static evolution af tlertical displacementis
according to the normal load, in the failing column (seEig. 1) is illustrated:

- From point (1) to (2) (Phase 1), the design loags mogressively applied, i.e the
“conventional” loading is applied to the structuse, Ni, progressively decreases{
becomes negative as the column “AB” is subjectedoimpression) whilela remains
approximately equal to O during this phase. Itsisusned that no yielding appears in the
investigated frame during this phase, i.e. the &@aemains fully elastic.

- From point (2) to (5), the column is progressivedynoved. Indeed, from point (2), the
compression in column “ABNj, decreases until it reaches a value equal to @iat p
(5) where the column is considered as fully destdoySo, in this zone, the absolute
value ofNj, progressively decreases while the valuetgincreases. This part of the
graph is divided in two phases as representé&ign2:



» From point (2) to (4) (Phase 2): during this phabe, directly affected part
passes from a fully elastic behaviour (from poRit o (3)) to a global plastic
mechanism. At point (3), the first plastic hinggpear in the directly affected
part.

= From point (4) to (5) (Phase 3): during this phdsgh deformations of the
directly affected part are observed and secondraflects play an important
role. In particular, significant catenary actiorevéelop in the bottom beams of
the directly affected part.
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Fig. 2. Evolution of N,, according to the vertical displacement at the top of the loss column

It is only possible to reach point (5) if:

— resistance of the directly affected part is appedpr

— the loads which are reported from the directly e#d part to the indirectly affected
part do not induce the collapse of elements inl#teer (for instance, buckling of
columns or development of a global plastic mechanisthe indirectly affected part);

— the different structural elements have a sufficieotctility to reach the vertical
displacement corresponding to point (5).

This global approach was first developed for steel composite structures but may be
applied to other typologies of structures, as givehable 1

Design recommendations

Dynamic effects/type of
exceptional actions

3D behaviour I I
2D behaviour D D
Global approach D D D D D
Steel Composite Concrete Timber Masonry
structures structures structures structures structures

-Developed (D) |:| Initiated (1) - To be developed (TBD)

Table 1. Steps to be crossed to derive design recommendations



In a first step, simplified analytical methods weleveloped to predict the response of 2D
steel and composite frames further to the loss oblamn with no dynamic effects; the
latter are summarised in section 2. Then, basethisrfirst step, studies were initiated to
take the 3D structural response and the dynamgctsfinto account; these two aspects are
respectively addressed in Section 3 and Sectidrhd.final objective is to progressively
complete Table 1 with “D” indexes, what means thedign recommendations would have
been derived for most typologies of structureshwisimilar global approach.

2 STATIC BEHAVIOUR OF 2D FRAMES FURTHER TO A COLUMN L OSS

Luu, in his PhD Thesis [Atudied the static response of 2D frames furthard¢olumn loss
during Phase 1 and Fif. 2), while the PhD Thesis of Demonceau [1] conceasrain
Phase 3 in which catenary effects develop. The tadoptrategy to study Phase 3 is
presented ifrig. 3.

— Step 1: an experimental test is carried out in &ieg a substructure with the aim to
simulate the loss of a column in a composite bngdrame;

— Step 2: analytical and numerical FEM tools aredaikd through comparisons with the
experimental results;

— Step 3: parametric studies based on the use ohtlikels validated at step 2 are carried
out; the objective is to identify the parameteuencing the frame response during
Phase 3;

— Step 4: a simplified analytical method is developsith due account of the parameters
identified at step 3 and validated through compasswith the experimental test
results of stepl.

STEP 1: experimenal tesi on a substructure simulating
the loss of a column

| STEP 2: validation of the numerical and analytical toobs

i 1

| STEP 3: parametric numerical studies | De:jiva'gion of
esign
l - guidelinesfor

| STEP 4: development oimplified analytical methcds | practitioners

Fig. 3. Strategy followed to investigate Phase 3

In the present paper, part of the research workenpeed within steps 1 (Section 2.1) and
4 (Section 2.2) are reflected. More informatioavsilable in[1] and[3].

2.1 Experimental test on a substructure simulating thdoss of a column

A test on a composite substructure has been pestbtm simulate the loss of a column.
The main objective of the test was to observe theeldpment of catenary actions within a
frame and the effect of these actions on the belawf the semi-rigid and partial-strength
composite beam-to-column joints. Indeed these gaame initially designed and loaded in
bending, but have progressively to support terieéels as a result of the development of
membrane tying forces in the beams.



To define the substructure properties, an “actaathposite building was first designed [1]

according to Eurocode 4, so under “normal” loadiogditions. As it was not possible to

test a full 2-D actual composite frame within thieject, a substructure was extracted from
the actual frame [1]; it was chosen so as to régpealimensions of the testing floor in the
laboratory but also to exhibit a similar behavidban the one in the actual frame. The
tested substructure is presentedrig. 4. As illustrated, horizontal jacks were placed at
each end of the specimen so as to simulate thellatstraints brought by the indirectly

affected part of actual building when catenaryadidevelop.

A specific loading history was followed during thest. First, the vertical jack at the
middle was locked and permanent loads were appheithe concrete slab with steel plates
and concrete blocks (“normal” loading situationpen, the vertical jack was unlocked and
large displacements develop progressively at paigEig. 4) until the force in the jack
vanished (free spanning of 8 m). Finally, a dowrdvaertical displacement was imposed
to the system above the impacted column and was pihegressively increased until
collapse. The “vertical load vs. vertical displa@hat point A” curve is reported Fig.

5.
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Fig. 5. “Vertical load at the jack vs. vertical displacement at point A” curve
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The first part of the test is represented by tlggrent “OA” of the curve presented kig.

5 and which represents the evolution of the vertioatl acting on the beams at the middle
of the substructure according to the vertical dispinent under the “impacted” column.
The vertical reaction in the lower column stub,dpefits removal, is equal to -33,5 kN
(value of the load at point “O”). FrorRig. 5, it can be seen that the structure remains
globally elastic when “A” is reached.



Then, as previously explained, a increasing vdrtisplacement is progressively imposed
until failure. During this stage, two “unloading@ading” sequences are followed as
illustrated inFig. 5.

From point “A” to “B” in Fig. 5, the substructure yields progressively to finddym a
beam plastic mechanism at point “B” (developmenplaktic hinges in the joints). At that
moment, the cracks in the concrete slab at therredteomposite joints are pronounced
and yielding of some steel components of the joimtsbserved (column web and beam
flange in compression). Also, for the internal casipe joint, a detachment of the end-
plate and of the column flange is observed.

From point “B” to “C”, a plateau develops, what meahat the vertical displacements
increase with a constant vertical load (equal t&RQ. All along the plateau, the concrete
cracks in the vicinity of the external compositénje continue to extend and yielding
spreads further in the steel joint components. d&ssthat, the concrete in compression
close to the internal composite joint crushes.

The horizontal jacks begin to be significantly aated at point “C” irFig. 5; at this point,
membrane forces start to develop as confirmed bystiape of the global displacement
curve (part “CD”). At point “D”, the longitudinalebars in the external composite joints
suddenly fail; at that moment, the external jomtek as steel ones. Yielding also affects
the different components of the internal and exdejmints. At point “D”, a loss of stiffness
related to the failure of the rebars is observedeed, when these rebars fail, both flexural
and tensile stiffness of the external joints deseesbut this not prevent the further
development of catenary actions.

Indeed, it can be observed that the failure ofrdimars does not lead to the failure of the
substructure; after point “D”, the vertical loadthe vertical jacks still increases with the
imposed displacement (part “DE” of the curve inl¥&24).

This is possible as long as the steel connecticabis to support, alone, the membrane
forces developed in the system. In addition, assedito the loss of the rebars, the vertical
displacements are increasing with a low variatibrthe vertical loads. These additional

vertical displacements induce an increase of thealonene forces. So, the steel connection
working alone has at the end to be sufficientlyistast to support these additional

membrane forces and sufficiently ductile to supploet additional rotations associated to
the vertical displacement. The capacity of thelsteenections, working alone, to support

significant membrane forces has been confirmeadbigton joints in isolation performed at

Stuttgart University [4].

2.2 Prediction of the frame response during Phase 3

In [1], it was shown, through numerical investigas, that it is possible to extract a
simplified substructure (se€ig. 6) composed of the beams and the joints just abose t
lost column and likely represent accurately theialcglobal response of full frame during
Phase 3. Accordingly, a simplified analytical metHmsed on a rigid-plastic analysis has
been developed to predict the response of the faoede substructure. Also, as the
deformations of the substructure are significartt exfluence its response, a second-order
analysis has been conducted.



The parameters taken into account in this processlastrated irFig.6:

— p is the (constant) uniformly distributed load apgdlion the storey modelled by the
simplified substructure and the concentrated load

— Q is a concentrated load simulating the progreskige of resistance of the column
(= Nio —Nyp - seeFig. 1);

— L is the total initial length of the substructure;

— Agis the vertical displacement at the concentraded hpplication point;

— & Is the deformation of the horizontal spring sintinig the lateral restraint provided
by the indirectly affected part;

— on1andoy; are the plastic elongations at each plastic hinge;

— @dis the rotation in the plastic hinges at the beatmemities.

In addition, the axial and bending resistancesaiplastic hingeblrq: andMgq; for plastic
hinges 1 and 4 anNrq2 and Mggz for plastic hinges 2 and 3 have also to be takém i
account (it is assumed that the two plastic hirlgasd 4 and the two plastic hinges 2 and 3
(seeFig. 6) have respectively the same resistance curve for iNteraction).

So as to be able to predict the response of thpli§iead substructure, the stiffnegsand
the resistanc€&rq Of the lateral restraint have to be known; them@ameters depend of the
properties of the indirectly affected part ($8g. 1). In [2] and [5], analytical procedures
have been defined to predict these characteristics.

In [1], Demonceau proposes an analytical expredsiotheQ-4q curve characterising the
response of the simplified substructure. As a wadiah, the results obtained with the latter
have been compared to the results of the experahtedt performed on the substructure
(see previous section). Fig. 7, it is seen that a very good agreement is obtdieddeen
the analytical prediction and the experimental meawents. More details about the
developed method are available in [1].
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3 STATIC BEHAVIOUR OF 3D STRUCTURES FURTHER TO A COLU MN
LOSS

In [6], the behaviour of 3D structures made of Isteeams and columns has been
investigated. Two different structures have beensittered, with same dimensions and
constitutive elements (ségg. 8); they just differ by the joint properties at tbetremities

of the secondary beams: pinned joints in Structuaad fully rigid joints in Structure 2.

For both cases, the column which is considereatio$t is the central one, as illustrated in
Fig. 8 (column “BX”).



For each structure, a simplified substructure Sige 9) has been defined and extracted
from the full 3D structure with the objective toedk the possibility of this substructure to
simulate with a sufficient accuracy the behaviotithe actual structure when significant
membrane forces develop. The procedure followedherdefinition of the substructure is
the same as the one used for 2D frames (see S&ctaad [1]). This substructure is made
of (i) four beams (two primary beams and two seasyndeams) connected at the top of
the failing column and of (ii) the joints at thetemities of these beams.

The influence of the rest of the structure (i.e part which is not directly affected by the
column loss) is reflected by horizontal springstla¢ extremities of the so-defined
substructure (sefeig. 6), with appropriate stiffnes¥{ andK,).

In Fig. 10, a comparison between the predictions obtainedthfiugh a numerical
simulation of the global 3D structure losing a eoiu and (i) through a numerical
simulation of the so-defined substructure is gif@nthe two considered structures. The
graphs given irFig. 10 represent the evolution of the axial lddg in the failing column
according to the vertical displacement at the tbfhis column. As the objective with the
substructure is to predict the behaviour of thacttire when significant membrane forces
develop in the system, the predictions can onlgdmapared from point A (seéig. 10,

i.e. when a plastic mechanism is formed in the céine and significant vertical
displacements are reached.Riy. 10, it can be observed that a very good agreement is
obtained for Structure 1 while it is not the caseStructure 2.

This observation can be explained as follows. s lof the column is reflected in the
substructure modelling through the application afoacentrated loa® (seeFig. 9). In
practice, this load) is equal to the difference betwel andN,, (seeFig. 1). For some
structures, it was demonstrated through a pararaktstudy [2] that, when significant
membrane forces are developing in the directlycadf@ beams, the value df, can be
assumed as a constant. Accordingly, the variatibrQovs. the deformation of the
substructure reflects the variation N, in the global structure. It is the reason why, for
some 2D structure, it is possible to reflect theualcbehaviour of the 2D frame with the
substructure. For StructureN,, remains approximately constant after the formatibtine
plastic mechanism and thus the substructure apiprisacalid. But for Structure 2\, in
not remaining constant and, as a result, the vaniabf Q according to the vertical
displacement in the substructure modelling doesreftect the actual evolution &, in
the 3D structure. The fact thia, is no more constant when significant membraneeforc
are developing is linked to the fact that a rethstion of forces takes place between the
storeys located above the lost column; this aspddth has to be explicitly considered in
the model, has not been analytically characterygdut is currently investigated. If the
variation of the normal force in the column jusbeb the failing one is introduced in the
substructure model, it may be seen that the resutisin good agreement with those
obtained from the study of the actual full 3D stune.

It is also demonstrated in [@at the analytical method initially developed & frames
[1] and able to predict the response of the “2Dbsttucture can be easily adapted to
predict the response of the “3D” substructure dafinn Fig. 9. Accordingly, when a
method will be available to predict the influendetloe restraint provided by the upper
storeys on the normal load in the column just alibweefailing one, it will be possible to



predict analytically the behaviour of the global 3Ducture through the substructure
modelling.
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Fig. 10. Comparisons between the results obtained through numerical simulations (i) of the 3D
structure and (ii) of the substructure

4 DYNAMIC BEHAVIOUR OF 2D FRAMES FURTHER TO A COLUMN LOSS

In [7] (see also [8]), the dynamic behaviour of el frames further to a column loss has
been studied. In particular, a simplified model basn developed to predict the dynamic
behaviour of the substructure defined in SectionS2me details of the conducted

investigations are given here after.



4.1 Description of the considered substructure and loadg

The dynamic behaviour of a simplified substructimech as described above was
investigated under the following assumptions: ssteictures are considered, the material
behavioural laws are supposed not to be affectestiayn rate effects and a quasi-static
elastic-perfectly plastic material law is assumiedir(ite ductility), the stiffness K of the
lateral spring remains constant and, finally, tlearb-to-column joints are perfectly rigid
and fully resistant.

A uniformly distributed loa@ is applied on the double-beam. Initially, the cahsupport

is present and sustains a foMg(No = p.lo, lo being the initial length of each beam). Then,
the latter is progressively removed, which is seedl by the application of a forpeequal
and opposite tdNy in the middle of the system. The complete losshefsupport takes a
timet; and a linear decrease of the force it sustaiasssimed. In static conditions, it had
been shown in [1] that the uniformly distributecdip could be neglected as far as the
behaviour in phase 3 was investigated, i.e. dogreater thanP,, which is the force
corresponding the plastic plateau in the stativedevelopment of a beam mechanism).
The validity of this assertion for dynamic situatowas studied [7]. Many numerical
dynamic tests were made on a substructure in ¢todsympare the maximum displacement
obtained in the two loading situatiorisid. 11) for the same loading paramet&sandt,
(Fig. 12. It was observed that the difference is limiteadvded the forceP is great
enough (above the static plastic plateau). Thahésreason why the behaviour of the
substructure under the simplified loading situatwees mainly investigated. Moreover, it
was shown that the introduction of damping in tiistem does not induce a significant
decrease of the maximum displacement [7]. As aemunence, undamped systems were
considered; this constitutes a conservative apjproac
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Fig. 12. Time evolution of the applied force P(t)

4.2 Influence of different parameters on the dynamic beaviour

To investigate the dynamic response of the sulisireica simplified loading is considered,
consisting of a single concentrated load appliethéxmiddle of the system. Obviously, as
well as under static loading, the level of the Idddnd the geometrical and mechanical
characteristics of the structure have an influeoneits behaviour. In case of dynamic
loadings, the application rate &f, characterised by the rise tinte (Fig. 12), is also
important. Besides, mass and damping propertieseasential factors on which the
dynamic response depends.



As mentioned above, the studied systems are undhones. As far as mass influence is
concerned, a change in mass has first the effaoibaifying the principal natural period of
the system. Numerical tests proved that the dynaesponse of a given structure is
actually governed by two parameteBsandt,/T, whereT is the period of the principal
eigenmode in the elastic domain [7]. Thus, if thesmof the system is modified but the
rise time of the load is adapted so that the rigfiois kept constant, then the maximum
displacement remains unchanged. Furthermore, the @&volution of the displacement
remains the same provided it is expressed as aidanaf a non-dimensional timeéT (or
t/t;).

In [7], the behaviour of the substructure accordimghe loading parameteRsandt, (or
t/T) was investigated through numerical dynamic areasyall the results presented below
are related to the following particular substruetur

— beamsiy = 6,5m IPE 45Q S235m =3000kg/m(T = 0,31sey;

— spring:stiffnessKk = 10000kN/mand very high resistandeg.

Performing dynamic analyses for different loadirapditions P, t;) and registering the
maximum displacement,,x obtained for each one, curves givinga.x as a function of the
applied forceP were established, for different values tpf(constant along one curve).
These curves are drawnhing. 13 only dynamic loadings leading ton.x smaller than the
displacement corresponding to the complete yieldoigthe beams in tension are
considered. On this graph, the upper curve istiiteeone, while the lower curve is the so-
called pseudo-static one, which gives the maximusplacement reached H is applied
instantaneouslyt{= 0). Such a curve can easily be established provedédthe nonlinear
static curve is known, following a procedure depeld at London Imperial College [4].
Obviously, the maximum displacement corresponding forceP will always be situated
between the static displacememt © «) and the displacement caused by the sudden
application of the load(= 0). As a consequence, eveBjUnay curve will lie between the
static and the pseudo-static ones all along, fgrvatue oft,. As a general rule, for a given
value of P,unay tends to decrease whgnncreases.
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Fig. 13. Maximum dynamic displacement according to the value of the load and its rise time

Different types of behaviour can already be hightiegl fromFig. 13. For loadsP>Pp,, two
types of response are observed according to tliBniggarameter® andt,. For the first
type, the maximum dynamic displacement is gredi@n the static displacement while, for
the second onelnax IS very close tausi. Examples of both response types are presented
below. For each of them, the dynamic curve reptasgrihe time evolution of the



displacementyy(t) is compared to the static curuga(t), which represents the evolution
of the displacement, dynamic amplification beingleeted. Accordinglyus.{t*) is the
static displacement associated with the value @btpplied loadP(t*) at the time*.

A response of type IF{g. 14) is met when the system yields and gets beyondstéie
displacement corresponding to the final I6adrhen, it finally oscillates around a value of
the displacement greater than this static displacentf a behaviour of type 2 occufad.

15), then, when the plastic mechanism forms and thglatement suddenly increases, the
latter however remains smaller than the staticlacgment corresponding to the final force
P. Next, the dynamic curvey«(t) oscillates around a more or less constant valulstthe
applied load continues to rise. Once the foR{® has increased enough so that the
associated static displacement meets the dynasptagement, the latter starts to increase
again, oscillating around the static curve. Eveihyuthe maximum dynamic displacement
is close tUsta(P).
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Fig. 14. Examples of the time evolution of the displacement for a response of type 1
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Fig.15. Examples of the time evolution of the displacement for a response of type 2

The time evolution of the displacement for bothpmsse types can be explained as
follows. When the plastic mechanism forms, the ldispment rapidly increases and a
distinct change in the slope of the cungg(t) is observed. However, due to its inertia, the
system gets on the move progressively and the atisplent remains at the beginning
below the static displacemend,(t) corresponding to the applied lo&ft). The system

starts to accelerate and the dynamic displacemetst goser to the static one. Then it
exceeds the latter and, the displacement of theersy®ecoming higher than the static
displacement associated with the fofeg) applied at the considered time, the velocity
begins to decrease. The reduction of the velodtgero, which corresponds to the first
maximum of the dynamic displacement curve and abibsation” of the system, may

occur for a displacement smaller or greater tharsthtic displacement associated with the



final load; that is what distinguishes the two bebar types. Then, there is a sort of
plateau in the curvegy(t). In the first case (type 1), this plateau is iiténin the second
case (type 2), it carries on until the applied éd€t) has sufficiently increased so that the
corresponding static displacement is equal to timaushic displacement. Next, the dynamic
curve oscillates around the static one to finai@psize around a value of the displacement
close tousa(P).

As far as internal forces are concerned, the daed in the beams remains very small
before the appearance of the three plastic hingg®n the moment in the middle and at
the extremities of the double-beam reaches theipkeueM,,, the mechanism forms and
the displacement rapidly increases, which indudes tlevelopment of significant
membrane forces in the beams. As a consequencediment acting in the plastic hinges
decreases to respect theN plastic interaction relation. At the end, oscitbas ofM and

N are observed while the displacement is oscillatangund a constant value. The
amplitude of the oscillations of the tension forselimited as the amplitude of the
variations of the displacement is also small. Ga @kther hand, the moment varies more
importantly, in phase with the oscillations wfThere corresponds a succession of elastic
“unloadings-loadings” that can be observed onNhH interaction diagram as well as on
the M-u and N-u curves [7]. Moreover, it is inteéneg to note that the maximum axial load
in the beams, which is obtained wheg is reached, is the same as the tension force that
would develop if this displacement was reachedcstiif. Accordingly, this membrane
force can be deduced from the sole knowledge&.gfand the static response.

4.3 Simplified approach to estimate the maximum dynamialisplacement

The objective was to develop a simplified metho@stimate the maximum displacement
reached for given loading conditionB, ¢/T) with P>Py. Then, it would be possible to
predict the required deformation capacity of thectiral members as well as the tension
force they should resist. In view of the aspedhef (, unay curves (se€ig. 13, the idea
was to approach the latter, beyond the plastieplgtby approximate curves established as
follows [7]: section 1= horizontal at the level oPp; section 2= pseudo-static curve;
section 3= vertical between the pseudo-static and the statice, at the absciS$B= Unax

at which the actualR, unay curve joins the static curve; section=4static curve. An
example of such a curve is presenteBligt 16 (“correct” approximate curve). For too low
values of the ratit/T, the dynamic curve does not join the static ore sections 3 and 4
cannot be defined. It is also possible that se@idoes not exist.

200

static

—— pseudo

—+—— tr=10sec

— "corred”

approximate curve

curve < basicmadel

= = cyrve < final maodel

0.60 -0.80 -1.00 -1.20 -1.40
u(m)

Fig. 13. Example of an approximate dynamic curve



To be able to draw such an approximate curve, ahgevofuy,ns is still to determine. The
point Pyans Wransg at which the dynamic curvé®(umay associated with a given value of
t/T joins the static curve corresponds to a transibetween the two types of response
previously described. Indeed, we haugax > Ustat for P < Pyans (type 1) andumax = Ustat
for P > Pyans (type 2). As explained before, the behaviour tigpgoverned by the value of
the displacementugaeay) When the velocity is reduced to zero for thetftisie after the
formation of the plastic mechanism. In fact, typeatresponds tOipjateas > Usta P) While
type 2 is associated withpjateau < Ustad P).

As a consequence, ibaeau CcOuld be evaluated for a given loading, then thereximate
dynamic curve R, Umayappr. COrresponding to a fixed value of (or t/T) could be
established following this procedure: (i) deterntioa of the displacementipiaeay for
different values oP and comparison with the static displacemegi(P); (ii) identification

of the force for whichupiaeau = Ustad P): this value of the load iByans (iii) deduction of
Utrans = Usta Prrans) from the static curve; (iv) drawing of the compl@&urve P, Unayappr. -

In order to carry out the first stage of this prhoes, a simplified model was developed to
estimateUpiaeau [3]. The latter is described below.

At first, a basic simplified model was developedienthe following assumptions. It is a
rigid-plastic model, in which the beams are con®deto be infinitely rigid and thus
keeping a constant length= |,. The plastic hinges developing at their extremitaee
submitted to a mome¥ = My assumed to be constant, interaction with the d=id
being neglected. Finally, moderate displacememtsapposed, which means that:

) zlﬂ(z sind ~ tgd)

2 2
cosd ~ 1—% ~ 1L

T

Fig. 17. Considered system and main definitions

An energy equation was written, consisting in egpimeg that the work done by the
external forceP(t) is equal to the sum of the kinetic energy, theknafrthe plastic hinges
and the energy stocked in the lateral spring:

1
Eki'netic+ Er:mges + Esp?"mg = M{g = EMguz + 4J‘M(9)d9 +f FK(6K)d6K = f P(u)du (1)

) 4.M, 2K . t
& My i) + ——+ 7 u(t) :P(t):P.a (2)
WhereMy = 1/3.m2lp = 1/3My is the generalised mass of the systgmis the elongation
of the horizontal spring ari€k the force it sustains.

This equation is only valid until the first maximurhthe displacement is reached, which is
Uplateau a@nd provided it occurs before the applied loadob®e constant, so that it is
expressed aB(t) = P.t/t.. However, these restrictions are of no consequbeoe. Indeed,



what we are interested in is the determination Wfxeayw and what happens after is no
concern. Moreover, as the final objective is théedeination ofPyans, Only responses
relatively close to the intermediate situation lkedw the two behaviour types are
interesting; and, in such cases, the plateau alwty$s at a timéyaeau < tr. In order to
resolve the previous equation, initial conditioasdto be defined. In the considered rigid-
plastic system, the displacement and the veloc#&ybath zero until the plastic mechanism
is formed. So the equation is resolved from theetign with the initial conditionsug =
u(tp) = 0 andu, = u(t,) = 0.

u(t)

Uplatean

>l
.ﬁu !f,”."uh’- ul
Fig. 18. Typical response of the system defined on the basis of the model

Unfortunately, this equation has no analytical 8oluand had to be numerically resolved.
Moreover, it was observed that the use of thistdamidel leads to underestimatBateau ,
and then the value @f.ns (See the corresponding curve on the graphi@f16). That can
be explained by the fact that different aspectdewntgd in the development of the basic
model would induce greater displacements if tak&o iaccount. Eventually, the final
model was developed from equation (1) but consigethe M-N plastic interaction
(Mpi(N) = Mpi(u) < M) and the elongation of the beani@j = I(u) > lo). Then, the last
approximate curve ofig. 16 was drawn using this final model and following the
previously described procedure. It is observed thatdeveloped simplified method still
leads to underestimate the extreme dynamic displesefor values of the forde close to
Prans FOr the considered example, the maximum unsabe israbout 8%.

5 CONCLUSIONS

At Liege University, the exceptional scenario “lagsa column” in a building structure has
been under investigation for a few years with thmalf objective to propose design
requirements to ensure an appropriate robustnesstroftures under the considered
scenario.

The present paper gives a global overview of theptatl development strategy for this

scenario, of the achievements in this field soafad of the ongoing research activities. In
particular, simplified analytical methods have beereloped to predict the static response
of 2D steel and composite frames further to a colloss. Investigations are presently in

progress to extend these methods to 3D structBessdes, the dynamic behaviour of 2D

structures has been investigated and a procedwsebéan developed to predict the

dynamic response of a simplified substructure. &Herther validation and there extension

to 3D structures have still to be developed further
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