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ABSTRACT 
 
Recent events such as natural catastrophes or terrorism attacks have highlighted the 
necessity to ensure the structural integrity of buildings under an exceptional event. 
According to the Eurocodes and some different other national design codes, the structural 
integrity of civil engineering structures should be ensured through appropriate measures 
but, in most cases, no precise practical guidelines on how to achieve this goal are provided.  
At Liège University, the robustness of building frames is investigated with the final 
objective to propose design requirements to mitigate the risk of progressive collapse 
considering the conventional scenario “loss of a column” further to an unspecified event. 
In particular, a complete analytical procedure has been developed for the verification of the 
robustness of steel or composite plane frames. For sake of simplicity, these first works 
have been based on the assumption that the dynamic effects linked to the column loss were 
limited and could therefore be neglected. More recently, complementary works have been 
carried out with the objective to address the dynamic effects.  Besides that, the extension of 
the static procedure to actual 3D frames is under investigation in Liège. The present paper 
gives a global overview of the ongoing researches in the field of robustness at Liège 
University and, in particular, the global strategy aiming at deriving design requirements is 
detailed. 
 
1 ADOPTED STRATEGY 
 
The studies performed at Liège University in the field of “robustness of structures” are 
mainly dedicated to the exceptional scenario “loss of a column” in a steel or steel-concrete 
composite building structure. The main objective is to derive guidelines for an appropriate 
design of the structure for the considered scenario. To achieve this goal, simplified 
analytical procedures are developed to predict the response of the structure further to a 
column loss; as an outcome, the way on how each structural parameter influences the 
structural behaviour may be described. The present section describes the global research 
strategy adopted by the authors. 
 



 

  

The loss of a column can be associated to different types of exceptional events: explosion, 
impact of a vehicle, fire… Under many of these exceptional actions, dynamic effects may 
play an important role. However, it is first assumed that the column loss does not induce 
dynamic effects; so, the investigations of the structural response may be founded on static 
approaches. A building structure losing a column can be divided in two main parts, as 
illustrated in Fig. 1:  
- the directly affected part which represents the part of the building which is directly 

affected by the column loss, i.e. the beams, the columns and the beam-to-column joints 
which are just above the failing column and;  

- the indirectly affected part which includes the rest of the structure. The indirectly 
affected part is affected by the loads developing within the directly affected part; but 
obviously, these forces are themselves influenced by the response of the indirectly 
affected part. 

 
If a cut is realised in the structure at the top of the failing column (see Fig. 1), different 
internal forces in the vertical direction are identified: (i) the shear loads V1 and V2 at the 
extremities closed to the failing column, (ii) the axial load Nup in the column just above the 
failing column and (iii) the axial load Nlo in the failing column. The objective is to  predict 
the evolution of the vertical displacement of point “A” ∆A according to Nlo, with due 
account to the eventual membrane forces developing in the structure, in order to know the 
requested ductility of the different structural members and to check the resistance of the 
indirectly affected part loaded by additional loads coming from the directly affected part. 
 

  

                                  . 

Fig. 1. Representation of a frame losing a column and main definitions 

In Fig. 2, the curve representing the static evolution of the vertical displacement ∆A 
according to the normal load Nlo in the failing column (see Fig. 1) is illustrated: 
 
- From point (1) to (2) (Phase 1), the design loads are progressively applied, i.e the 

“conventional” loading is applied to the structure; so, Nlo progressively decreases (Nlo  
becomes negative as the column “AB” is subjected to compression) while ∆A remains 
approximately equal to 0 during this phase. It is assumed that no yielding appears in the 
investigated frame during this phase, i.e. the frame remains fully elastic. 
 

- From point (2) to (5), the column is progressively removed. Indeed, from point (2), the 
compression in column “AB” Nlo decreases until it reaches a value equal to 0 at point 
(5) where the column is considered as fully destroyed. So, in this zone, the absolute 
value of Nlo progressively decreases while the value of ∆A increases. This part of the 
graph is divided in two phases as represented in Fig. 2: 
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� From point (2) to (4) (Phase 2): during this phase, the directly affected part 
passes from a fully elastic behaviour (from point (2) to (3)) to a global plastic 
mechanism. At point (3), the first plastic hinges appear in the directly affected 
part. 

� From point (4) to (5) (Phase 3): during this phase, high deformations of the 
directly affected part are observed and second order effects play an important 
role. In particular, significant catenary actions develop in the bottom beams of 
the directly affected part. 
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Fig. 2. Evolution of Nlo according to the vertical displacement at the top of the loss column 
 
It is only possible to reach point (5) if: 
− resistance of the directly affected part is appropriate; 
− the loads which are reported from the directly affected part to the indirectly affected 

part do not induce the collapse of elements in the latter (for instance, buckling of 
columns or development of a global plastic mechanism in the indirectly affected part); 

− the different structural elements have a sufficient ductility to reach the vertical 
displacement corresponding to point (5). 

 
This global approach was first developed for steel and composite structures but may be 
applied to other typologies of structures, as given in Table 1. 
 

Design recommendations TBD TBD TBD TBD TBD 

Dynamic effects/type of 
exceptional actions 

I TBD TBD TBD TBD 

3D behaviour I I TBD TBD TBD 

2D behaviour D D TBD TBD TBD 

Global approach D D D D D 

 Steel 
structures  

Composite 
structures 

Concrete 
structures 

Timber 
structures  

Masonry 
structures 

 

Table 1. Steps to be crossed to derive design recommendations 
 

A 

Developed (D) Initiated (I) To be developed (TBD) 



 

  

In a first step, simplified analytical methods were developed to predict the response of 2D 
steel and composite frames further to the loss of a column with no dynamic effects; the 
latter are summarised in section 2. Then, based on this first step, studies were initiated to 
take the 3D structural response and the dynamic effects into account; these two aspects are 
respectively addressed in Section 3 and Section 4. The final objective is to progressively 
complete Table 1 with “D” indexes, what means that design recommendations would have 
been derived for most typologies of structures, with a similar global approach. 
 
2 STATIC BEHAVIOUR OF 2D FRAMES FURTHER TO A COLUMN L OSS  
 
Luu, in his PhD Thesis [2] studied the static response of 2D frames further to a column loss 
during Phase 1 and 2 (Fig. 2), while the PhD Thesis of Demonceau [1] concentrates on 
Phase 3 in which catenary effects develop. The adopted strategy to study Phase 3 is 
presented in Fig. 3: 
− Step 1: an experimental test is carried out in Liège on a substructure with the aim to 

simulate the loss of a column in a composite building frame; 
− Step 2: analytical and numerical FEM tools are validated through comparisons with the 

experimental results; 
− Step 3: parametric studies based on the use of the models validated at step 2 are carried 

out; the objective is to identify the parameters influencing the frame response during 
Phase 3; 

− Step 4: a simplified analytical method is developed with due account of the parameters 
identified at step 3 and validated through comparisons with the experimental test 
results of step1. 
 

 

Fig. 3. Strategy followed to investigate Phase 3 

In the present paper, part of the research works performed within steps 1 (Section 2.1) and 
4 (Section 2.2) are reflected. More information is available in [1]  and [3] . 
 
2.1 Experimental test on a substructure simulating the loss of a column 
 
A test on a composite substructure has been performed to simulate the loss of a column. 
The main objective of the test was to observe the development of catenary actions within a 
frame and the effect of these actions on the behaviour of the semi-rigid and partial-strength 
composite beam-to-column joints. Indeed these joints are initially designed and loaded in 
bending, but have progressively to support tensile loads as a result of the development of 
membrane tying forces in the beams.  
 

STEP 1: experimental test on a substructure simulating 
the loss of a column 

STEP 2: validation of the numerical and analytical tools 

STEP 3: parametric numerical studies Derivation of 
design 

guidelines for 
practitioners STEP 4: development of simplified analytical methods 



 

  

To define the substructure properties, an “actual” composite building was first designed [1] 
according to Eurocode 4, so under “normal” loading conditions. As it was not possible to 
test a full 2-D actual composite frame within the project, a substructure was extracted from 
the actual frame [1]; it was chosen so as to respect the dimensions of the testing floor in the 
laboratory but also to exhibit a similar behaviour than the one in the actual frame. The 
tested substructure is presented in Fig. 4. As illustrated, horizontal jacks were placed at 
each end of the specimen so as to simulate the lateral restraints brought by the indirectly 
affected part of actual building when catenary actions develop.  
 
A specific loading history was followed during the test. First, the vertical jack at the 
middle was locked and permanent loads were applied on the concrete slab with steel plates 
and concrete blocks (“normal” loading situation). Then, the vertical jack was unlocked and 
large displacements develop progressively at point A (Fig. 4) until the force in the jack 
vanished (free spanning of 8 m). Finally, a downward vertical displacement was imposed 
to the system above the impacted column and was then progressively increased until 
collapse. The “vertical load vs. vertical displacement at point A” curve is reported in Fig. 
5. 
 

 
Fig. 4. Tested substructure 

 

Fig. 5. “Vertical load at the jack vs. vertical displacement at point A” curve 
 
The first part of the test is represented by the segment “OA” of the curve presented in Fig. 
5 and which represents the evolution of the vertical load acting on the beams at the middle 
of the substructure according to the vertical displacement under the “impacted” column. 
The vertical reaction in the lower column stub, before its removal, is equal to -33,5 kN 
(value of the load at point “O”). From Fig. 5, it can be seen that the structure remains 
globally elastic when “A” is reached.  
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Then, as previously explained, a increasing vertical displacement is progressively imposed 
until failure. During this stage, two “unloading-reloading” sequences are followed as 
illustrated in Fig. 5. 
 
From point “A” to “B” in Fig. 5, the substructure yields progressively to finally form a 
beam plastic mechanism at point “B” (development of plastic hinges in the joints). At that 
moment, the cracks in the concrete slab at the external composite joints are pronounced 
and yielding of some steel components of the joints is observed (column web and beam 
flange in compression). Also, for the internal composite joint, a detachment of the end-
plate and of the column flange is observed. 
 
From point “B” to “C”, a plateau develops, what means that the vertical displacements 
increase with a constant vertical load (equal to 30 kN). All along the plateau, the concrete 
cracks in the vicinity of the external composite joints continue to extend and yielding 
spreads further in the steel joint components. Besides that, the concrete in compression 
close to the internal composite joint crushes. 
 
The horizontal jacks begin to be significantly activated at point “C” in Fig. 5; at this point, 
membrane forces start to develop as confirmed by the shape of the global displacement 
curve (part “CD”). At point “D”, the longitudinal rebars in the external composite joints 
suddenly fail; at that moment, the external joints work as steel ones. Yielding also affects 
the different components of the internal and external joints. At point “D”, a loss of stiffness 
related to the failure of the rebars is observed; indeed, when these rebars fail, both flexural 
and tensile stiffness of the external joints decrease; but this not prevent the further 
development of catenary actions. 
 
Indeed, it can be observed that the failure of the rebars does not lead to the failure of the 
substructure; after point “D”, the vertical load at the vertical jacks still increases with the 
imposed displacement (part “DE” of the curve in Figure 24). 
 
This is possible as long as the steel connection is able to support, alone, the membrane 
forces developed in the system. In addition, associated to the loss of the rebars, the vertical 
displacements are increasing with a low variation of the vertical loads. These additional 
vertical displacements induce an increase of the membrane forces. So, the steel connection 
working alone has at the end to be sufficiently resistant to support these additional 
membrane forces and sufficiently ductile to support the additional rotations associated to 
the vertical displacement. The capacity of the steel connections, working alone, to support 
significant membrane forces has been confirmed by tests on joints in isolation performed at 
Stuttgart University [4].  
 
2.2 Prediction of the frame response during Phase 3 
 
In [1], it was shown, through numerical investigations, that it is possible to extract a 
simplified substructure (see Fig. 6) composed of the beams and the joints just above the 
lost column and likely represent accurately the actual global response of full frame during 
Phase 3. Accordingly, a simplified analytical method based on a rigid-plastic analysis has 
been developed to predict the response of the so-defined substructure. Also, as the 
deformations of the substructure are significant and influence its response, a second-order 
analysis has been conducted. 
 



 

  

The parameters taken into account in this process are illustrated in Fig.6: 
− p is the (constant) uniformly distributed load applied on the storey modelled by the 

simplified substructure and the concentrated load 
− Q is a concentrated load simulating the progressive loss of resistance of the column 

(=bNlo – Nup - see Fig. 1); 
− L is the total initial length of the substructure; 
− ∆Q is the vertical displacement at the concentrated load application point; 
− δK is the deformation of the horizontal spring simulating the lateral restraint provided 

by the indirectly affected part; 
− δN1 and δN2 are the plastic elongations at each plastic hinge; 
− θ is the rotation in the plastic hinges at the beam extremities. 
 
In addition, the axial and bending resistances at the plastic hinges NRd1 and MRd1 for plastic 
hinges 1 and 4 and NRd2 and MRd2 for plastic hinges 2 and 3 have also to be taken into 
account (it is assumed that the two plastic hinges 1 and 4 and the two plastic hinges 2 and 3 
(see Fig. 6) have respectively the same resistance curve for M-N interaction). 
 
So as to be able to predict the response of the simplified substructure, the stiffness K and 
the resistance FRd of the lateral restraint have to be known; these parameters depend of the 
properties of the indirectly affected part (see Fig. 1). In [2] and [5], analytical procedures 
have been defined to predict these characteristics. 
 
In [1], Demonceau proposes an analytical expression for the Q-∆Q curve characterising the 
response of the simplified substructure. As a validation, the results obtained with the latter 
have been compared to the results of the experimental test performed on the substructure 
(see previous section). In Fig. 7, it is seen that a very good agreement is obtained between 
the analytical prediction and the experimental measurements. More details about the 
developed method are available in [1]. 
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           Fig. 6.  Substructure to be investigated Fig. 7.  Comparison analytical prediction vs. 
experimental results 

3 STATIC BEHAVIOUR OF 3D STRUCTURES FURTHER TO A COLU MN 
LOSS  

In [6], the behaviour of 3D structures made of steel beams and columns has been 
investigated. Two different structures have been considered, with same dimensions and 
constitutive elements (see Fig. 8); they just differ by the joint properties at the extremities 
of the secondary beams: pinned joints in Structure 1 and fully rigid joints in Structure 2.  
 
For both cases, the column which is considered to be lost is the central one, as illustrated in 
Fig. 8 (column “BX”). 
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For each structure, a simplified substructure (see Fig. 9) has been defined and extracted 
from the full 3D structure with the objective to check the possibility of this substructure to 
simulate with a sufficient accuracy the behaviour of the actual structure when significant 
membrane forces develop. The procedure followed for the definition of the substructure is 
the same as the one used for 2D frames (see Section 2 and [1]). This substructure is made 
of (i) four beams (two primary beams and two secondary beams) connected at the top of 
the failing column and of (ii) the joints at the extremities of these beams. 
 
The influence of the rest of the structure (i.e. the part which is not directly affected by the 
column loss) is reflected by horizontal springs at the extremities of the so-defined 
substructure (see Fig. 6), with appropriate stiffness (Kx and Kz). 
 
In Fig. 10, a comparison between the predictions obtained (i) through a numerical 
simulation of the global 3D structure losing a column and (ii) through a numerical 
simulation of the so-defined substructure is given for the two considered structures. The 
graphs given in Fig. 10 represent the evolution of the axial load Nlo in the failing column 
according to the vertical displacement at the top of this column. As the objective with the 
substructure is to predict the behaviour of the structure when significant membrane forces 
develop in the system, the predictions can only be compared from point A (see Fig. 10), 
i.e. when a plastic mechanism is formed in the structure and significant vertical 
displacements are reached. In Fig. 10, it can be observed that a very good agreement is 
obtained for Structure 1 while it is not the case for Structure 2. 
 
This observation can be explained as follows. The loss of the column is reflected in the 
substructure modelling through the application of a concentrated load Q (see Fig. 9). In 
practice, this load Q is equal to the difference between Nlo and Nup (see Fig. 1). For some 
structures, it was demonstrated through a parametrical study [2] that, when significant 
membrane forces are developing in the directly affected beams, the value of Nup can be 
assumed as a constant. Accordingly, the variation of Q vs. the deformation of the 
substructure reflects the variation of Nlo in the global structure. It is the reason why, for 
some 2D structure, it is possible to reflect the actual behaviour of the 2D frame with the 
substructure. For Structure 1, Nup remains approximately constant after the formation of the 
plastic mechanism and thus the substructure approach is valid. But for Structure 2, Nup in 
not remaining constant and, as a result, the variation of Q according to the vertical 
displacement in the substructure modelling does not reflect the actual evolution of Nlo in 
the 3D structure. The fact that Nup is no more constant when significant membrane forces 
are developing is linked to the fact that a redistribution of forces takes place between the 
storeys located above the lost column; this aspect, which has to be explicitly considered in 
the model, has not been analytically characterised yet but is currently investigated. If the 
variation of the normal force in the column just above the failing one is introduced in the 
substructure model, it may be seen that the results are in good agreement with those 
obtained from the study of the actual full 3D structure. 
 
It is also demonstrated in [6] that the analytical method initially developed for 2D frames 
[1] and able to predict the response of the “2D” substructure can be easily adapted to 
predict the response of the “3D” substructure defined in Fig. 9. Accordingly, when a 
method will be available to predict the influence of the restraint provided by the upper 
storeys on the normal load in the column just above the failing one, it will be possible to 



 

  

predict analytically the behaviour of the global 3D structure through the substructure 
modelling. 
 

              
Fig. 8. Investigated 3D structure 

 
Fig. 9. Substructure extracted from the 3D structure 

    

Fig. 10. Comparisons between the results obtained through numerical simulations (i) of the 3D 
structure and (ii) of the substructure 

4 DYNAMIC BEHAVIOUR OF 2D FRAMES FURTHER TO A COLUMN LOSS 

In [7] (see also [8]), the dynamic behaviour of 2D steel frames further to a column loss has 
been studied. In particular, a simplified model has been developed to predict the dynamic 
behaviour of the substructure defined in Section 2. Some details of the conducted 
investigations are given here after. 
 

Primary beam 
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4.1 Description of the considered substructure and loading 
 
The dynamic behaviour of a simplified substructure such as described above was 
investigated under the following assumptions: steel structures are considered, the material 
behavioural laws are supposed not to be affected by strain rate effects and a quasi-static 
elastic-perfectly plastic material law is assumed (infinite ductility), the stiffness K of the 
lateral spring remains constant and, finally, the beam-to-column joints are perfectly rigid 
and fully resistant. 
 
A uniformly distributed load p is applied on the double-beam. Initially, the central support 
is present and sustains a force N0 (N0 = p.l0, l0 being the initial length of each beam). Then, 
the latter is progressively removed, which is simulated by the application of a force p equal 
and opposite to N0 in the middle of the system. The complete loss of the support takes a 
time tr and a linear decrease of the force it sustains is assumed. In static conditions, it had 
been shown in [1] that the uniformly distributed load p could be neglected as far as the 
behaviour in phase 3 was investigated, i.e. for p greater than Ppl, which is the force 
corresponding the plastic plateau in the static curve (development of a beam mechanism). 
The validity of this assertion for dynamic situations was studied [7]. Many numerical 
dynamic tests were made on a substructure in order to compare the maximum displacement 
obtained in the two loading situations (Fig. 11) for the same loading parameters P and tr 
(Fig. 12). It was observed that the difference is limited provided the force P is great 
enough (above the static plastic plateau). That is the reason why the behaviour of the 
substructure under the simplified loading situation was mainly investigated. Moreover, it 
was shown that the introduction of damping in the system does not induce a significant 
decrease of the maximum displacement [7]. As a consequence, undamped systems were 
considered; this constitutes a conservative approach. 

 
  

 

 

 

 

 

Fig. 11. Considered system with realistic and simplified loadings 
 

 
Fig. 12. Time evolution of the applied force P(t) 

 
 

4.2 Influence of different parameters on the dynamic behaviour 
 
To investigate the dynamic response of the substructure, a simplified loading is considered, 
consisting of a single concentrated load applied in the middle of the system. Obviously, as 
well as under static loading, the level of the load P and the geometrical and mechanical 
characteristics of the structure have an influence on its behaviour. In case of dynamic 
loadings, the application rate of P, characterised by the rise time tr (Fig. 12), is also 
important. Besides, mass and damping properties are essential factors on which the 
dynamic response depends. 



 

  

 
As mentioned above, the studied systems are undamped ones. As far as mass influence is 
concerned, a change in mass has first the effect of modifying the principal natural period of 
the system. Numerical tests proved that the dynamic response of a given structure is 
actually governed by two parameters: P and tr/T, where T is the period of the principal 
eigenmode in the elastic domain [7]. Thus, if the mass of the system is modified but the 
rise time of the load is adapted so that the ratio tr/T is kept constant, then the maximum 
displacement remains unchanged. Furthermore, the time evolution of the displacement 
remains the same provided it is expressed as a function of a non-dimensional time t/T (or 
t/tr).  
 
In [7], the behaviour of the substructure according to the loading parameters P and tr (or 
tr/T) was investigated through numerical dynamic analyses. All the results presented below 
are related to the following particular substructure: 
− beams: l0 = 6,5m, IPE 450, S235,m = 3000kg/m (T = 0,31sec); 
− spring: stiffness K = 10000kN/m and very high resistance FRd. 
 
Performing dynamic analyses for different loading conditions (P, tr) and registering the 
maximum displacement umax obtained for each one, curves giving  umax  as a function of the 
applied force P were established, for different values of tr (constant along one curve). 
These curves are drawn in Fig. 13; only dynamic loadings leading to  umax  smaller than the 
displacement corresponding to the complete yielding of the beams in tension are 
considered. On this graph, the upper curve is the static one, while the lower curve is the so-
called pseudo-static one, which gives the maximum displacement reached if P is applied 
instantaneously (tr = 0). Such a curve can easily be established provided only the nonlinear 
static curve is known, following a procedure developed at London Imperial College [4]. 
Obviously, the maximum displacement corresponding to a force P will always be situated 
between the static displacement (tr � ∞) and the displacement caused by the sudden 
application of the load (tr = 0). As a consequence, every (P,umax) curve will lie between the 
static and the pseudo-static ones all along, for any value of tr. As a general rule, for a given 
value of (P,umax) tends to decrease when tr increases. 
 

 
Fig. 13. Maximum dynamic displacement according to the value of the load and its rise time 

 
Different types of behaviour can already be highlighted from Fig. 13. For loads P>Ppl, two 
types of response are observed according to the loading parameters P and tr. For the first 
type, the maximum dynamic displacement is greater than the static displacement while, for 
the second one, umax is very close to ustat. Examples of both response types are presented 
below. For each of them, the dynamic curve representing the time evolution of the 



 

  

displacement udyn(t) is compared to the static curve ustat(t), which represents the evolution 
of the displacement, dynamic amplification being neglected. Accordingly, ustat(t*)  is the 
static displacement associated with the value of the applied load P(t*) at the time t* . 
 
A response of type 1 (Fig. 14) is met when the system yields and gets beyond the static 
displacement corresponding to the final load P. Then, it finally oscillates around a value of 
the displacement greater than this static displacement. If a behaviour of type 2 occurs (Fig. 
15), then, when the plastic mechanism forms and the displacement suddenly increases, the 
latter however remains smaller than the static displacement corresponding to the final force 
P. Next, the dynamic curve udyn(t) oscillates around a more or less constant value whilst the 
applied load continues to rise. Once the force P(t) has increased enough so that the 
associated static displacement meets the dynamic displacement, the latter starts to increase 
again, oscillating around the static curve. Eventually, the maximum dynamic displacement 
is close to ustat(P).  
 

        
Fig. 14. Examples of the time evolution of the displacement for a response of type 1 

 

 
Fig.15. Examples of the time evolution of the displacement for a response of type 2 

 
The time evolution of the displacement for both response types can be explained as 
follows. When the plastic mechanism forms, the displacement rapidly increases and a 
distinct change in the slope of the curve udyn(t) is observed. However, due to its inertia, the 
system gets on the move progressively and the displacement remains at the beginning 
below the static displacement ustat(t) corresponding to the applied load P(t). The system 
starts to accelerate and the dynamic displacement gets closer to the static one. Then it 
exceeds the latter and, the displacement of the system becoming higher than the static 
displacement associated with the force P(t) applied at the considered time, the velocity 
begins to decrease. The reduction of the velocity to zero, which corresponds to the first 
maximum of the dynamic displacement curve and a “stabilisation” of the system, may 
occur for a displacement smaller or greater than the static displacement associated with the 



 

  

final load; that is what distinguishes the two behaviour types. Then, there is a sort of 
plateau in the curve udyn(t). In the first case (type 1), this plateau is infinite. In the second 
case (type 2), it carries on until the applied force P(t) has sufficiently increased so that the 
corresponding static displacement is equal to the dynamic displacement. Next, the dynamic 
curve oscillates around the static one to finally stabilize around a value of the displacement 
close to ustat(P). 
 
As far as internal forces are concerned, the axial load in the beams remains very small 
before the appearance of the three plastic hinges. When the moment in the middle and at 
the extremities of the double-beam reaches the plastic value Mpl, the mechanism forms and 
the displacement rapidly increases, which induces the development of significant 
membrane forces in the beams. As a consequence, the moment acting in the plastic hinges 
decreases to respect the M-N plastic interaction relation. At the end, oscillations of M and 
N are observed while the displacement is oscillating around a constant value. The 
amplitude of the oscillations of the tension force is limited as the amplitude of the 
variations of the displacement is also small. On the other hand, the moment varies more 
importantly, in phase with the oscillations of u. There corresponds a succession of elastic 
“unloadings-loadings” that can be observed on the M-N interaction diagram as well as on 
the M-u and N-u curves [7]. Moreover, it is interesting to note that the maximum axial load 
in the beams, which is obtained when umax is reached, is the same as the tension force that 
would develop if this displacement was reached statically. Accordingly, this membrane 
force can be deduced from the sole knowledge of umax and the static response. 
 
4.3 Simplified approach to estimate the maximum dynamic displacement 
 
The objective was to develop a simplified method to estimate the maximum displacement 
reached for given loading conditions (P, tr/T) with P>Ppl. Then, it would be possible to 
predict the required deformation capacity of the structural members as well as the tension 
force they should resist. In view of the aspect of the (P, umax) curves (see Fig. 13), the idea 
was to approach the latter, beyond the plastic plateau, by approximate curves established as 
follows [7]: section 1 ≡ horizontal at the level of Ppl; section 2 ≡ pseudo-static curve; 
section 3 ≡ vertical between the pseudo-static and the static curve, at the abscissa u = umax 
at which the actual (P, umax) curve joins the static curve; section 4 ≡ static curve. An 
example of such a curve is presented at Fig. 16 (“correct” approximate curve). For too low 
values of the ratio tr/T, the dynamic curve does not join the static one and sections 3 and 4 
cannot be defined.  It is also possible that section 2 does not exist. 
 

 
Fig. 13. Example of an approximate dynamic curve  

 



 

  

To be able to draw such an approximate curve, the value of utrans is still to determine. The 
point (Ptrans, utrans) at which the dynamic curve (P, umax) associated with a given value of 
tr/T joins the static curve corresponds to a transition between the two types of response 
previously described. Indeed, we have  umax  > ustat for P < Ptrans (type 1) and  umax  ≈  ustat  
for P > Ptrans (type 2). As explained before, the behaviour type is governed by the value of 
the displacement (uplateau) when the velocity is reduced to zero for the first time after the 
formation of the plastic mechanism. In fact, type 1 corresponds to uplateau > ustat(P) while 
type 2 is associated with  uplateau < ustat(p). 
 
As a consequence, if uplateau could be evaluated for a given loading, then the approximate 
dynamic curve (P, umax)appr. corresponding to a fixed value of tr (or tr/T) could be 
established following this procedure: (i) determination of the displacement uplateau for 
different values of P and comparison with the static displacement ustat(P); (ii) identification 
of the force for which uplateau = ustat(P): this value of the load is Ptrans; (iii) deduction of 
utrans = ustat(Ptrans) from the static curve; (iv) drawing of the complete curve (P, umax)appr. . 
In order to carry out the first stage of this procedure, a simplified model was developed to 
estimate uplateau [3]. The latter is described below. 
 
At first, a basic simplified model was developed under the following assumptions. It is a 
rigid-plastic model, in which the beams are considered to be infinitely rigid and thus 
keeping a constant length l = l 0. The plastic hinges developing at their extremities are 
submitted to a moment M = Mpl assumed to be constant, interaction with the axial load 
being neglected. Finally, moderate displacements are supposed, which means that: 
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Fig. 17. Considered system and main definitions 
 
An energy equation was written, consisting in expressing that the work done by the 
external force P(t) is equal to the sum of the kinetic energy, the work of the plastic hinges 
and the energy stocked in the lateral spring: 
 

 
Where Mg = 1/3.m.2l0 = 1/3.Mtot is the generalised mass of the system, δk  is the elongation 
of the horizontal spring and Fk the force it sustains.  
 
This equation is only valid until the first maximum of the displacement is reached, which is 
uplateau, and provided it occurs before the applied load become constant, so that it is 
expressed as P(t) = P.t/tr. However, these restrictions are of no consequence here. Indeed, 



 

  

what we are interested in is the determination of  uplateau and what happens after is no 
concern. Moreover, as the final objective is the determination of Ptrans, only responses 
relatively close to the intermediate situation between the two behaviour types are 
interesting; and, in such cases, the plateau always starts at a time tplateau < tr. In order to 
resolve the previous equation, initial conditions have to be defined. In the considered rigid-
plastic system, the displacement and the velocity are both zero until the plastic mechanism 
is formed. So the equation is resolved from the time tpl, with the initial conditions: u0 = 
u(tpl) = 0 and 0u& = ( )plu t& = 0. 

 

 
Fig. 18. Typical response of the system defined on the basis of the model 

 
Unfortunately, this equation has no analytical solution and had to be numerically resolved. 
Moreover, it was observed that the use of this basic model leads to underestimate  uplateau , 
and then the value of utrans (see the corresponding curve on the graph of Fig. 16). That can 
be explained by the fact that different aspects neglected in the development of the basic 
model would induce greater displacements if taken into account. Eventually, the final 
model was developed from equation (1) but considering the M-N plastic interaction 
(Mpl(N) = Mpl(u) < Mpl) and the elongation of the beams (l(N) = l(u) > l 0). Then, the last 
approximate curve of Fig. 16 was drawn using this final model and following the 
previously described procedure. It is observed that the developed simplified method still 
leads to underestimate the extreme dynamic displacement for values of the force P close to 
Ptrans. For the considered example, the maximum unsafe error is about 8%.  
 

5 CONCLUSIONS  

At Liège University, the exceptional scenario “loss of a column” in a building structure has 
been under investigation for a few years with the final objective to propose design 
requirements to ensure an appropriate robustness of structures under the considered 
scenario.  
 
The present paper gives a global overview of the adopted development strategy for this 
scenario, of the achievements in this field so far and of the ongoing research activities. In 
particular, simplified analytical methods have been developed to predict the static response 
of 2D steel and composite frames further to a column loss. Investigations are presently in 
progress to extend these methods to 3D structures. Besides, the dynamic behaviour of 2D 
structures has been investigated and a procedure has been developed to predict the 
dynamic response of a simplified substructure. There further validation and there extension 
to 3D structures have still to be developed further. 
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