
 
 
 
 

Disproportionate collapse analysis of steel buildings – a plastic limit approach on 
robustness 

 
 

Gerasimidis Simos 
Ph.D., Structural Engineer  

Institute of Steel Structures, Aristotle University of Thessaloniki 
Thessaloniki, Greece 

E-mail: sgerasim@civil.auth.gr 
 

Bisbos Christos 
Professor 

Institute of Steel Structures, Aristotle University of Thessaloniki 
Thessaloniki, Greece 

E-mail: cbisbos@civil.auth.gr 
 

Baniotopoulos Charalampos 
Professor 

Institute of Steel Structures, Aristotle University of Thessaloniki 
Thessaloniki, Greece 

E-mail: cbisbos@civil.auth.gr 
 
 
 
 

1. ABSTRACT 
 
Disproportionate collapse of building structures is defined as the partial or total failure 
of a building following a triggering event of local failure which cannot be absorbed 
through the internal continuity and ductility of the structural system of a building 
structure. As a consequence of the initial local failure or damage, a chain of new 
failures is propagated horizontally or vertically in the structural system, developing 
into the partial or total failure of the building, such that the final damage is 
disproportionate to the local initial failure caused by the triggering event. In that 
sense, disproportionate structural collapse occurs in a steel structure when a triggering 
event causes the full or partial collapse of the structural system disproportionally to 
the locality of the initiating event.  
 
This paper presents a linear programming technique for the computation of respective 
collapse loads of steel building structures in the spirit of limit and shakedown analysis 
for damaged structures ([1]). Simple damage Kachanov indexes are introduced for 
elements which are considered as fully or partially damaged. Additionally, global 
robustness measures are proposed measuring the frame's residual bearing capacity 
after structural damage; the measures are defined as the ratios of safety factors of the 
damaged frame over that of the undamaged one. 



2. INTRODUCTION 
 
Disproportionate collapse can be provoked by numerous sources including 
construction or design flaws which surpass the common design base of current codes. 
Triggering events can be abnormal loads not included in the design, for example gas 
explosions, vehicle impacts, fire or extreme environmental loads which push the 
structural system well beyond the strength envelope. In this framework, all buildings 
are vulnerable to disproportionate collapse in some level. Currently, available 
structural codes are among the tools used by structural engineers in order to manage 
the level of risk in favor of public security. So far, relevant guidelines inside the codes 
refer to loads and strengths, addressing the risk in structural performance, without 
taking into account disproportionate collapse events and consequences. However, 
disproportionate collapse, although a rare event, inevitably awakes the public interest, 
mainly due to its sudden and unexpected characteristic, as well as its catastrophic 
human or financial consequences. Thus, the need for a relevant code framework is 
increasingly important.  
 
For the computational assessment of the collapse load of damaged structures, damage-
modified versions of common linearized yield criteria from design codes are used, 
rendering the optimization problem to be a linear programming one. Both the standard 
collapse load problem and the first plastification problem are considered, in order to 
capture ductile and non-ductile failures. The FEM data are obtained on the basis of 
standard 3node Timoshenko beam-column isoparametric elements and the solution of 
the linear programming problems is obtained by the commercial linear programming 
software MOSEK. Following this procedure, the collapse load factor is computed 
through the so-called direct methods of plasticity coupled with FEM. The 
computational realization is based on a combination of a linear FEM research code 
with linear programming software ([2]). The main objective of the present work is the 
quantification of robustness of steel structures using the direct methods of plasticity 
and the utilization of already accepted methods of disproportionate collapse analysis 
such as the alternate load path method of the DoD ([3]). The originality of the work 
lies on the computational approach regarding the quantification of the problem of 
disproportionate collapse in its general form and the definition of global robustness 
measures. 
 
 
3. DISPROPORTIONATE COLLAPSE BASICS – ALTERNATE LOAD 

PATH METHOD  
 
A central issue of AP method consists in the definition of the load cases to be 
considered. DoD makes a clear distinction between two separate load case categories: 
the deformation controlled actions and the force controlled actions. The intention for 
the classification of the load cases regards the type of failure of the elements 
associated with each one of the types of actions. Thus, deformation controlled actions 
concern rather ductile failures, while force controlled actions concern more brittle 

types of failure. First, a set of four basic load combinations φ�

(�)
, i = 1, … ,4 is defined 

and let B be the respective index set, � = �1,2,3,4�. These four basic load 
combinations have a global character for the building - without any consideration of 
column removal and respective effects - and they are used for both deformation and 
force controlled actions. Assuming that the k-column is removed, each basic 



combination φ�

(�)
, i ∈ B generates the respective actual load cases φ�

���
(�) for 

deformation-controlled actions and φ�

���
(�)  for force-controlled actions: 

 

φ�

������ = ��� + ��	���− 1�∆��� ���,										φ

������ = ��� + ��
 − 1�∆��� (�) (1) 

 
where ∆��� (�) is simply the part of ��� , which corresponds to the floor areas above 
the line of the removed k-th column. Factors �	��� and �
 are load increase factors 
(LIFs), which represent dynamic amplification phenomena, depending on the type of 
the structure's material and are mainly intended for linear static analysis. If the 
material is steel, �	 depends on the type of the connections between the elements 
above the removed k-th column and this fact is represented by the explicit dependence 
of this factor on the removed column k. In contrast, factor �
 is connection-
independent. For nonlinear static analysis, the DoD suggests the use of a dynamic 
increase factor �� and therefore eq. (1) takes the following form. Remarkably, �� is 
always a smaller number than �	. 
 

φ�

������ = ��� + ������− 1�∆��� (�)      (2) 
 
 
4. LIMIT ANALYSIS OF DAMAGED STEEL FRAMES  
 
In this section, a simple formulation of the limit analysis problem of damaged steel 
frames is described. Notation follows that of [4], [5], [6], [7].  
 
4.1 Linear FEM analysis of damaged structures 
 
Let Θ be a damaged structure, discretized within a geometrically linear FEM 
framework with NU free nodal displacements. Θ contains NG numerical integration 
points (Gauss points), which will be used in this work as stress checking points. Local 
quantities, always referred to the j-th Gauss point of Θ, are denoted by the respective 
subscript. Damage is introduced via indexes 
�  satisfying: 
 

0 ≤ 
� ≤ 1,							� = 1,…… .�
����       (3) 
 
which determine the local damage degree. Lower bound 
� = 0 is the local intact state 
condition (no damage) and upper bound 
�=1 characterizes the state of full local 
damage. An element is removed, if the full-damage condition holds for all its Gauss 
points. Let δ be the vector of dimension NG, which lists all 
� of the structure. The 
NU x NU linear stiffness matrix K  of the damaged structure reads: 
 

� = �����
�����
��

���

						���ℎ		��� = (1 − 
�)��																																																																(4) 
            
where the intact quantities �� , �� and �� are the standard integration weight, the 
modulus matrix and the strain-displacement matrix. In the sequel, the equilibrium 
matrices �� = ����
 will be also used. The linear displacement nodal vector u and the 



local elastic stress vectors ��(��) under some external nodal load vector φ are obtained 
by the usual FEM equations: 
 

�� = �,				��(��) = ������,							� = 1,… . ,�
	      (5) 
 
In limit analysis, loading consists of a permanent nodal load vector �� and of a 
monotonically growing variable one ���, where scalar � is the load pattern 
multiplier. Pair (��,��) constitutes the underlying load case and let �� ,�� be the 
elastic stresses due to ��,�� obtained by Eq.(5). 
 
4.2 Piece-wise linear yield criteria of damaged sections 
 
Local elastoplastic stresses under loading �� + ��� can be written as the sum of the 
elastic ones and of the self-equilibrating stresses ��. In 3D frame analysis, �� contains 
the axial/shearing forces and the twisting/bending moments: 
 
�� = �� + ��� + �� = (�,�� ,��,��,�� ,��)


	     (6) 
 
and let us collect the respective individual intact plastic capacities 
���,���.� ,���.�,���.�,���.�	�� 	���.� in the diagonal entries of a local 6x6 diagonal 
matrix  !�. The components of �� have to satisfy the local yield criteria, modified by 
damage, which comprise the individual bounds posed by the individual capacities and 
the plastic interaction conditions. In this work, � −�� −�� interactions are 
considered, which incorporate the respective individual capacity bounds. 
Correspondingly, the following partitioning of �� is appropriate, where the 
dimensionless subvectors "�, #� of �� read: 
 
�� = 	!�($�"� + $�#�),          "� = (%� ,%�,�)
 ,								#� = (&� , &�,%�)


   (7) 
 
and $�,$�	are appropriate permutation matrices [7]. The yield criteria of the damaged 
j-section are now written in the partitioned form: 
 
"� ∈ '� ,								#� ∈ (�                       (8) 
 
where the non-intecactively part #� satisfies the individual plastic capacity bounds and 
the interactive part "� must lie within a bounded polyhedron with MJ facets: 
 
(� = )# ∈ *� ∶ 	 |,�| ≤ -1 − 
�./,										'� = )" ∈ *� ∶ 	 0� " ≤ -1 − 
�.1�/              (9) 
 
where the MJ columns of 0� are the unit normals to the polyhedron faces and the 
intact capacity vector 1� lists the respective positive distances of the facets to the 

origin. In this work, two types of '�, are considered. First set '�(!"#$) contains the 
damage-modified AISC plastic interaction relations with MJ = 16 facets: 
 
234( ∶ 	 |�|+ -8 95 .-6%�6+ |%�|. 						≤ 				1 − 
� ,                

																								0.5|�|+ 6%�6+ |%�| 						≤ 				1 − 
�               (10) 



 

and the second criterion '�(%&'()) j is a rhombic one with MJ = 8 facets:. 
 
*ℎ7%8�9	(:(3) ∶ 	 |�|+ 6%�6+ |%�| 						≤ 				1 − 
� ,              (11) 
 
whose intact form is accepted as a conservative interaction criterion dictated by EC3. 
It is noteworthy that, in the simple formulation of Eq.(8)-(11), damage enters only the 
capacity sides of all criteria inequalities. The criteria original intact form corresponds 
to 
� = 0. All criteria sets shrink to zero in case 
� = 1 (full damage). 
 
4.3 Limit analysis and elastic limit problems 
 
In a quasi-lower bound framework, the following optimization problem constitutes 
the limit analysis problem of the damaged frame Θ: 
 
;*+
-<,��,��.						��=�%�,>						� 

�?8�>9�> 	�7:		���@� =
��

�� + ��� , 
														�� = 	!�($�"� + $�#�),       "� ∈ '� ,								#� ∈ (�,      � = 1,… . ,�
            (12) 
 
where problem dependence on the given damage vector < and on the underlying load 
case were made explicit for the purposes of the present paper. Using Eq.(8) yields the 
following, equivalent optimization problem: 
 
;*+
-<,��,��.						��=�%�,>						� 

�?8�>9�> 	�7:		���@� =
��

0, 

		�� + ��� + �� = 	!�($�"� + $�#�),      "� ∈ '� ,						#� ∈ (�,     � = 1,… . ,�
      (13) 
 
Setting �� = 0 yields the elastic limit problem: 
 
;,*+-<,��,��.						��=�%�,>						� 

�?8�>9�> 	�7:		���@� =
��

0, 

			�� + ��� = 	!�($�"� + $�#�),         "� ∈ '� ,								#� ∈ (� ,										� = 1,… . ,�
      (14) 
 
which is the problem of first section plastification in frame Θ. ;*+
 is a problem of 
elastoplasticity with unlimited ductility and it allows for non-elastic stress 
redistribution, represented by �� . Problem ;,*+ can be used for situations with non-
ductile behavior, since non-elastic stress redistribution within Θ is prohibited. In the 
last case, other intact capacity matrices !� can be appropriate, e.g. by including 
buckling. From the numerical point of view, all maximization problems are linear 
programming problems, which can be solved by appropriate software. The 
partitioning, defined by Eq.(7), allows to take directly advantage of standard software 
options to treat separately simple variable bounds. Eq.(12) is preferable than Eq.(13), 



since the solution of Eq.(5) is avoided and damage appears only in the capacity sides 
of the criteria inequalities. Problem ;,*+, defined by Eq.(14), is a simple minmax 
problem. In the sequel, the safety factors obtained by the aforementioned limit 
analysis and elastic limit problems will be denoted by �*+
∗ 	-<,��,��.	and 
�,*+∗ 	-<,��,��.. 
 
 
5. COLUMN REMOVAL: COLLAPSE ANALYSIS AND ROBUSTNESS  
 
Collapse load analysis for column removal via limit analysis of damaged structures is 
now straightforward. Let A	be the set of all columns, whose removal is to be 
considered. Let us assign to each column in A a global damage vector <-: 
 
� ∈ A								 → 				 <- ∈ *�.                               (15) 
 
This structural damage vector has all entries equal to zero (intact state) except those 
ones, which correspond to the Gauss points contained within the removed column: 
their damage indexes are set equal to one (full damage). Actually, Eq.(16) is far more 
general, since it encompasses partial damage. This way, the philosophy and scope of 
the AP method can be meaningfully extended by assigning a certain partial damage 
level to the columns, adjacent to the removed one. Let us, now, define the 
abbreviations: 
 

�*+
��, 0� 								= 			 �*+
∗ 	B0,0,�/(�)C                 (16) 

�,*+��, 0� 								= 			 �,*+∗ 	B0,0,�/(�)C                 (17) 

�*+
��, �� 								= 			 �*+
∗ 	B<-, 0,�/(�)C                (18) 

�,*+��, �� 								= 			 �,*+∗ 	B<-, 0,�/(�)C                (19) 

2*+
��� 												= 			min�∈0 �*+
��, ��                (20) 
2,*+��� 												= 			min�∈0 �,*+��, ��                (21) 
 
Evidently, Eqs.(16)-(17) concern the undamaged structure (fully intact without any 
column removal effect). Condition: 
 
2*+
��� ≥ 1                    (22) 
 
represents the "collapse survival" of the structure for all column removals under the i-
th deformation controlled loading. Respectively, the "first plastification" condition of 
the damaged structure reads: 
 
2,*+��� ≥ 1                    (23) 
 

By virtue of the safety factor definition, 4�D>�E	D�9�7F = 	/�12�34	61�16���
*'1�

, the load 

multipliers �*+
, �,*+ are structural bearing capacities measured in terms of the 
acting load. In this context, the ratios: 
 
F*+
��, �� = 	 �*+
��, �� �*+
��, 0�⁄ ,        F,*+��, �� = �,*+��, �� �,*+��, 0�⁄        (24) 
 



Both these dimensionless, residual bearing capacities satisfy the condition, 0 ≤ F ≤ 1	 
and the respective bearing capacity loss equals 1 − F	. 
 
In this work, quantities F*+
��, �� and F,*+��, �� are proposed as respective 
robustness measures. The maximal possible value r = 1 indicates full robustness 
(bearing capacity loss equal to zero) and, respectively, the minimal possible value r = 
0 characterizes zero robustness (capacity loss maximized). Obviously, the critical 
robustness measures, which correspond to 2*+
��� and 2,*+��� under the i-th 
loading, are given by: 
 
**+
��� 								= 			 2*+
��� �*+
��, 0�⁄ = 	min�∈0 F*+
��, ��              (25) 
*,*+��� 								= 			 2,*+��� �,*+��, 0�⁄ = 	min�∈0 F,*+��, ��              (26) 
 
The ranges of safety factors are completely described by defining the respective upper 
values: 
 
2̅*+
��� = 	max�∈0 �*+
��, ��,         2̅,*+��� = 	max�∈0 �,*+��, ��             (27) 
 
and the respective robustness measures are given by: 
 
*I*+
��� = 	 2̅*+
��� �*+
��, 0�⁄ = 	max�∈0 F*+
��, ��               (28) 
*I,*+��� = 	 2̅,*+��� �,*+��, 0�⁄ = 	max�∈0 F,*+��, ��               (29) 
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ΕΛΛΗΝΙΚΗ ΠΕΡΙΛΗΨΗ 
 
Η δυσαναλογική κατάρρευση ενός κτιρίου ορίζεται ως η καταστροφική µερική ή 
ολική αστοχία του κτιρίου ως επακόλουθο ενός γενεσιουργού γεγονότος τοπικής 
βλάβης, η οποία δεν µπορεί να απορροφηθεί από την εσωτερική συνέχεια και 
πλαστιµότητα του στατικού συστήµατος του κτιρίου. Ως απόρροια της αρχικής 
τοπικής αστοχίας ή βλάβης, µία αλυσίδα νέων αστοχιών προκαλείται οριζοντίως ή 
κατακορύφως µέσα στο στατικό σύστηµα, εξελισσόµενη σε µία εκτεταµένη µερική ή 
ολική αστοχία του κτιρίου, έτσι ώστε η τελικώς παραγόµενη βλάβη είναι δυσανάλογη 
της τοπικής αστοχίας που προκλήθηκε από το αρχικό γεγονός.  
 
Η παρούσα εργασία παρουσιάζει τεχνικές µαθηµατικού προγραµµατισµού για τον 
υπολογισµό φορτίων κατάρρευσης µεταλλικών κτιρίων υπό βλάβη στο πνεύµα της 
οριακής και υπερωθητικής ανάλυσης ([1]). Απλοί δείκτες βλάβης Kachanov 
εισάγονται στα δοµικά στοιχεία που µπορούν να υποστούν µερική ή ολική βλάβη. 
Επιπλέον, προτείνονται καθολικά µεγέθη στιβαρότητας καθοριζόµενα από την 
αποµένουσα αντοχή των φορέων µετά από βλάβη. Τα µεγέθη αυτά ορίζονται ως οι 
λόγοι των συντελεστών ασφαλείας του φορέα υπό βλάβη προς τους συντελεστές 
ασφαλείας του ανέπαφου φορέα.  
 


