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1. ABSTRACT

Disproportionate collapse of building structuredégined as the partial or total failure
of a building following a triggering event of loctdilure which cannot be absorbed
through the internal continuity and ductility ofetlstructural system of a building
structure. As a consequence of the initial locdufa or damage, a chain of new
failures is propagated horizontally or vertically the structural system, developing
into the partial or total failure of the buildinguch that the final damage is
disproportionate to the local initial failure cadsby the triggering event. In that
sense, disproportionate structural collapse odouassteel structure when a triggering
event causes the full or partial collapse of thacstiral system disproportionally to
the locality of the initiating event.

This paper presents a linear programming techriojuhe computation of respective
collapse loads of steel building structures ingpiit of limit and shakedown analysis
for damaged structures ([1]). Simple damage Kachandexes are introduced for
elements which are considered as fully or partiddynaged. Additionally, global

robustness measures are proposed measuring the'dramsidual bearing capacity
after structural damage; the measures are defimdldearatios of safety factors of the
damaged frame over that of the undamaged one.



2. INTRODUCTION

Disproportionate collapse can be provoked by numsersources including
construction or design flaws which surpass the comdesign base of current codes.
Triggering events can be abnormal loads not indudehe design, for example gas
explosions, vehicle impacts, fire or extreme enwvinental loads which push the
structural system well beyond the strength enveltpéhis framework, all buildings
are vulnerable to disproportionate collapse in soeneel. Currently, available
structural codes are among the tools used by smalatngineers in order to manage
the level of risk in favor of public security. Sarf relevant guidelines inside the codes
refer to loads and strengths, addressing the nis&tructural performance, without
taking into account disproportionate collapse evemtd consequences. However,
disproportionate collapse, although a rare eveetjitably awakes the public interest,
mainly due to its sudden and unexpected charatiteress well as its catastrophic
human or financial consequences. Thus, the need fetevant code framework is
increasingly important.

For the computational assessment of the collaggkdbdamaged structures, damage-
modified versions of common linearized yield cigefrom design codes are used,
rendering the optimization problem to be a lineagpamming one. Both the standard
collapse load problem and the first plastificatpmoblem are considered, in order to
capture ductile and non-ductile failures. The FEMadare obtained on the basis of
standard 3node Timoshenko beam-column isoparanmedémeents and the solution of
the linear programming problems is obtained bydbmercial linear programming
software MOSEK. Following this procedure, the go#la load factor is computed
through the so-called direct methods of plasticigupled with FEM. The
computational realization is based on a combinatiba linear FEM research code
with linear programming software ([2]). The maineatiive of the present work is the
guantification of robustness of steel structuréagishe direct methods of plasticity
and the utilization of already accepted methoddisfroportionate collapse analysis
such as the alternate load path method of the O8[) [The originality of the work
lies on the computational approach regarding thentjication of the problem of
disproportionate collapse in its general form anel definition of global robustness
measures.

3. DISPROPORTIONATE COLLAPSE BASICS — ALTERNATE LOAD
PATH METHOD

A central issue of AP method consists in the dedfini of the load cases to be
considered. DoD makes a clear distinction betweenseparate load case categories:
the deformation controlled actions and the forcetrmled actions. The intention for
the classification of the load cases regards tlpe tgf failure of the elements
associated with each one of the types of actiohas;Tdeformation controlled actions
concern rather ductile failures, while force cohéa actions concern more brittle

types of failure. First, a set of four basic Ioanlnbinationsxpg),i =1,...,4 is defined

and let B be the respective index sé&,={1,2,3,4}. These four basic load
combinations have a global character for the bogldi without any consideration of
column removal and respective effects - and theyused for both deformation and
force controlled actions. Assuming that the k-caluns removed, each basic



combination (p() i € B generates the respective actual load caag)s(k) for

deformation-controlled actions aqxii) (k) for force-controlled actions:

95 (k) = 0 + () — DAGE(K), @’ (k) = ¢h + (2 ~ DAph(k) (1)

whereAgj (k) is simply the part ofp, which corresponds to the floor areas above
the line of the removed k-th column. Fact@s(k) and, are load increase factors
(LIFs), which represent dynamic amplification pherema, depending on the type of
the structure's material and are mainly intended lifeear static analysis. If the
material is steelf2, depends on the type of the connections betweerléraents
above the removed k-th column and this fact iseggnted by the explicit dependence
of this factor on the removed column k. In contrdsictor 2 is connection-
independent. For nonlinear static analysis, the BoDgests the use of a dynamic
increase factofy and therefore eq. (1) takes the following formnfekably,2y is
always a smaller number thay.

eV (k) = @k + (A (k) — 1)Ap} (k) @)

4. LIMIT ANALYSIS OF DAMAGED STEEL FRAMES

In this section, a simple formulation of the linamalysis problem of damaged steel
frames is described. Notation follows that of [&], [6], [7].

4.1 Linear FEM analysis of damaged structures

Let ® be a damaged structure, discretized within a géwaly linear FEM
framework with NU free nodal displacemeng.contains NG numerical integration
points (Gauss points), which will be used in thirkvas stress checking points. Local
guantities, always referred to the j-th Gauss poiréd, are denoted by the respective
subscript. Damage is introduced via inde&essatisfying:

0<6<1, j=1,...NGY (3)

which determine the local damage degree. Lower #hépi= 0 is the local intact state

condition (no damage) and upper boufj¢l characterizes the state of full local
damage. An element is removed, if the full-damagediion holds for all its Gauss

points. Letd be the vector of dimension NG, which lists @llof the structure. The

NU x NU linear stiffness matrik of the damaged structure reads:

K= Z w;B]CIB;  with C{' = (1-§;)C; (4)

where the intact quantitie#;, C; and B; are the standard integration weight, the
modulus matrix and the strain-displacement matrixthe sequel, the equilibrium
matricesH; = ijjT will be also used. The linear displacement noéateru and the



local elastic stress vectos]%el) under some external nodal load vegjare obtained
by the usual FEM equations:

l .
Ku = ¢, Sj(e) = C]‘-iBju, j=1,...,NG (5)
In limit analysis, loading consists of a permanantial load vectorp, and of a
monotonically growing variable one,, where scalara is the load pattern
multiplier. Pair (¢,, ¢,,) constitutes the underlying load case andplgty; be the
elastic stresses duedn, ¢,, obtained by Eq.(5).

4.2 Piece-wise linear yield criteria of damaged sectian

Local elastoplastic stresses under loadmgt agp, can be written as the sum of the
elastic ones and of the self-equilibrating streggesn 3D frame analysis;; contains
the axial/shearing forces and the twisting/bendnogments:

si=pjtav;+p; =NV, V,M,M,, M,)" ©)

and let us collect the respective individual intagilastic capacities

Npi, Vor.y, Vpr.z Mpre, My, and My, , in the diagonal entries of a local 6x6 diagonal
matrix N;. The components af have to satisfy the local yield criteria, modifiey
damage, which comprise the individual bounds pdwsetihe individual capacities and
the plastic interaction conditions. In this work, — M, — M, interactions are
considered, which incorporate the respective imldial capacity bounds.
Correspondingly, the following partitioning of; is appropriate, where the

dimensionless subvectays, z; of s; read:
Sj = Nj(Pin + Pzzi)’ yj = (mmez; n)T; Zj = (vy; vz:mt)T (7)

andP,, P, are appropriate permutation matrices [7]. The yeeiteria of the damaged
J-section are now written in the partitioned form:

yi€F, z€( (8)

where the non-intecactively paat satisfies the individual plastic capacity boundd a
the interactive parg; must lie within a bounded polyhedron with MJ facet

Ci={zeR®: |z|<(1-6)} Fr={yeRrR®: Ly <(1-¢)K;} (9)

where the MJ columns di; are the unit normals to the polyhedron faces ded t
intact capacity vectok; lists the respective positive distances of theetado the
origin. In this work, two types of;, are considered. First s@f‘“sc) contains the
damage-modified AISC plastic interaction relationth MJ = 16 facets:

1-6,

1- 5 (10)

AISC |l + (%/g) (Imy] + Im1)

<
0.5|n| + |my| + Im,| <



dg'](Rhomb)

and the second criteri j is a rhombic one with MJ = 8 facets:.

Rhombic (EC3) : |n| + |my| +|m,l =< 1-§, (11)

whose intact form is accepted as a conservatiesaation criterion dictated by ECS3.

It is noteworthy that, in the simple formulationt®d.(8)-(11), damage enters only the
capacity sides of all criteria inequalities. Theesta original intact form corresponds

to 6; = 0. All criteria sets shrink to zero in ca8e= 1 (full damage).

4.3 Limit analysis and elastic limit problems

In a quasi-lower bound framework, the following iopzation problem constitutes
the limit analysis problem of the damaged fragne

PLMT(S,fpp,<p,,) Maximize a
NG
subjected to: Z H;s; =@, + ag,,
Sj: Nj(Pyyi+PzZi)a ijF}', ZjECj, ]:1,,NG (12)
where problem dependence on the given damage w@&od on the underlying load

case were made explicit for the purposes of thegmtepaper. Using Eq.(8) yields the
following, equivalent optimization problem:

PLMT(S,(pp,gov) Maximize a
NG
subjected to: Z H;s; =0,
p]+av]+p]= N](Pyyl‘l‘PZZl), y]EF} ZjEC}', ]=1,,NG (13)
Settingp; = 0 yields the elastic limit problem:

PELM(b',(pp,(pv) Maximize a
NG
subjected to: Z H;s; =0,
pj+avj= Nj(Pin-I_PZZi)’ yJEF} ZjECj, ]:1,,NG (14)

which is the problem of first section plastificaticn frame®. P, is a problem of
elastoplasticity with unlimited ductility and it lalws for non-elastic stress
redistribution, represented Ipy . ProblemPg,,, can be used for situations with non-
ductile behavior, since non-elastic stress rethigtion within ® is prohibited. In the
last case, other intact capacity matridés can be appropriate, e.g. by including
buckling. From the numerical point of view, all nraczation problems are linear
programming problems, which can be solved by appatgp software. The
partitioning, defined by Eq.(7), allows to takeeditly advantage of standard software
options to treat separately simple variable boubds(12) is preferable than Eq.(13),



since the solution of Eq.(5) is avoided and daneggeears only in the capacity sides
of the criteria inequalities. Problefy,;,,, defined by Eq.(14), is a simple minmax
problem. In the sequel, the safety factors obtaibgdthe aforementioned limit
analysis and elastic limit problems will be denotey aj,r (8, ¢, ¢,)and

arLm (5; Dp, ‘Pv)-

5. COLUMN REMOVAL: COLLAPSE ANALYSIS AND ROBUSTNESS

Collapse load analysis for column removal via liamialysis of damaged structures is
now straightforward. Letk be the set of all columns, whose removal is to be
considered. Let us assign to each columk anglobal damage vectéy:

kek - &8, ERNG (15)

This structural damage vector has all entries etjuakro (intact state) except those
ones, which correspond to the Gauss points comtavthin the removed column:
their damage indexes are set equal to one (fullag@n Actually, Eq.(16) is far more
general, since it encompasses partial damage.Wdys the philosophy and scope of
the AP method can be meaningfully extended by asgjga certain partial damage
level to the columns, adjacent to the removed dret. us, now, define the
abbreviations:

apmr (i, 0) = amr (0’0’ (plgi)) (16)
agLm (i, 0) = Qpym (0:0: (plgi)) 17)
apmr (i k) = aryr (sk: 0, <Pg)) (18)
(k) = apu (810.95) (19)
Apyr (D) = Mingeg arpr (i k) (20)
Agm (D) = mingeg apy (i k) (21)

Evidently, Eqgs.(16)-(17) concern the undamagedcsira (fully intact without any
column removal effect). Condition:

Apyr () =21 (22)

represents the "collapse survival" of the structareall column removals under the i-
th deformation controlled loading. Respectivelye thirst plastification" condition of
the damaged structure reads:

Agn () =1 (23)

Bearing capacity

By virtue of the safety factor definitiosafety factor = — , the load

multipliers a;yr, agy a@re structural bearing capacities measured in stesimthe
acting load. In this context, the ratios:

rmr (k) = apyr (@, k) /apmr (i, 0), reLm (k) = agm (i, k) /agu (i, 0) (24)



Both these dimensionless, residual bearing capacttisfy the conditio, < r < 1
and the respective bearing capacity loss eduals .

In this work, quantitiesr;yr(i,k) and rg(i,k) are proposed as respective
robustness measures. The maximal possible valuelrindicates full robustness
(bearing capacity loss equal to zero) and, resgsgtithe minimal possible value r =
0 characterizes zero robustness (capacity lossmieed). Obviously, the critical
robustness measures, which corresponddig,;(i) and Ag;y (i) under the i-th
loading, are given by:

Rymr (D) = Apr(@/apur(i,0) = mingeg rppr (i, k) (25)
Rgpm (@) = Apm(D/agm(i,0) = mingeg repm (k) (26)

The ranges of safety factors are completely desdridy defining the respective upper
values:

I‘TLMT (i) = maxyeg apmr (i, k), I‘TELM(i) = maxyex gLy (i, k) (27)

and the respective robustness measures are given by

Riwr (@) = Apwr()/aiur(i,0) = maxyek rumr (i, k) (28)
Rem (@) = Apm(D)/agm(i,0) = maxyeg 1 (i, k) (29)
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EAAHNIKH ITEPIAHYH

H dvoavaroywn katdppevon evog ktipiov opiletor g 1 KATAGTPOPIKN UEPIKN 1
OMKT aoToyio Tov KTplov ¢ eMakOAOLOO €VOG YEVEGLOVPYOD YEYOVOTOG TOTIKNG
BAGPnG, m omoio d0esv pmopel vo amoppoendsi amd TV £0MTEPIKN GLVEYELD KOt
TAOGTILOTNTA TOV GTOTIKOV GUGTHUOTOS TOL KTipiov. Q¢ amdppold TG OPYIKNG
TomKNG actoyiog N PAEPnNS, pia aivcida véov actoyudv mpokaieitor oplovting 1
KOTOKOPOQ®MG LEGO, GTO GTATIKO GVOTNUO, EEEMGGOUEVT] O Uiol EKTETAUEVT] LEPIKN 7
OAIKN AoTOYi0 TOV KTIplov, £T61 MOTE 1) TEAIK®OG TTapayopevn PAGPN etvar dvsavdioyn
NG TOTMIKNG QLGTOYI0G TOV TPOKANONKE QIO TO APYLKO YEYOVOC.

H mapovoa epyacio mapovctdlel texvikés HLOOMUATIKOD TPOYPOUUOTICLOD Y0 TOV
VIOLOYIGUO POPTIOV KATAPPELONG UETOAAMK®OV KTipiwv vd PAAPN oto TTvedua g
oplakng kot vrepwdnTikng avaivong ([1]). Amhoi deikteg PAapng Kachanov
€16AYOVTOL 6TA JOUIKA GTOXELD TOL UTOPOVV VO, VTOGTOVV UEPIKN 1| OMKN PAGPT.
Emumléov, mpoteivovtar kabolkd peyédn otifapdmmrag kabopldpevo omd TNV
ATOUEVOVCO aVTOY TOV POpEV UeTd amd PAAPnN. Ta peyédn avtd opiloviar g ot
AOYOL TOV GUVTEAEGTAOV OGQPAAEING TOV QOpéa VIO PAGPT TPOG TOVG GUVIEAECTEC
ACQOAEING TOV OVETOPOV POPEQ.



