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1. ABSTRACT 

 

In this paper an “advanced” 20x20 stiffness matrix and the corresponding nodal load vector 

of a beam element of arbitrary composite cross taking into account shear lag effects due to 

both flexure and torsion is applied for the analysis of steel framed structures. Nonuniform 

warping distributions, which are responsible for shear lag effects are taken into account by 

employing four additional degrees of freedom. 

 

 

2. INTRODUCTION 

 

In engineering practice the analysis of spatial frames is frequently encountered. The 

involved beam members of such structures are usually analyzed employing Euler-Bernoulli 

or Timoshenko beam theories. Both theories maintain the assumption that cross sections 

remain plane after deformation. Thus, the formulation remains simple; however it fails to 

capture “shear lag” phenomenon which is associated with a significant modification of 

normal stress distribution due to nonuniform shear warping [1,2]. In up-to-date regulations, 

the significance of shear lag effect in flexure is recognized. However in order to simplify 

the analysis, the “effective breadth” concept is recommended. This simplifying approach 

may fail to capture satisfactorily the actual structural behavior of the member. Therefore, it 

is necessary to include nonuniform shear warping effects in the analysis. Similar 

considerations with the ones made for flexure could be also adopted for the problem of 

torsion which is also very often encountered in the analysis of spatial frames (e.g. in 

curved-in-plan bridges, buildings of complex geometry etc.). It is well-known, that a beam 

undergeneral twisting loading and boundary conditions, is leaded to nonuniform torsion. 

The major characteristic of this problem is the presence of normal stress due to primary 

torsional warping. In an analogy with Timoshenko beam theory when shear deformation is 

important, Secondary Torsional Shear Deformation Effect (STSDE) [3,4] has to be taken 
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into account as well. The additional secondary torsional warping due to STSDE causes 

similar effects with shear lag in flexure, i.e. a modification of the initial normal stress 

distribution. 

In the present study, an advanced 20x20 stiffness matrix and the corresponding nodal 

load vector of a member of arbitrary cross section taking into account shear lag effects due 

to both flexure and torsion, is constructed. Nonuniform warping distributions, which are 

responsible for shear lag effects are taken into account by employing four independent 

warping parameters, multiplying a shear warping function in each direction [1] and two 

torsional warping functions, which are obtained by solving corresponding boundary value 

problems. Ten boundary value problems with respect to kinematical components are 

formulated and solved using the Analog Equation Method [5], a BEM based technique. 

The warping functions and the geometric constants including the additional ones due to 

warping are evaluated employing a pure BEM approach. The aforementioned problems are 

formulated employing an improved stress field arising from the correction of shear stress 

components. 

 

 

3. STATEMENT OF THE PROBLEM 

 

Consider a prismatic element of length l  with an arbitrarily shaped composite cross 

section consisting of materials in contact, each of which can surround a finite number of 

inclusions, with modulus of elasticity mE  and shear modulus mG , occupying the regions 

m  ( 1,2,...,m M ) of the yz  plane (Fig.1). The materials of these regions are assumed 

homogeneous, isotropic and linearly elastic. CXYZ  is the principal bending coordinate 

system through centroid C , while Cy , Cz  are its coordinates with respect to Sxyz  system 

through shear center S . The beam element is subjected to arbitrarily distributed or 

concentrated axial loading ( )xp X , transverse loading ( )yp x , ( )zp x , twisting moment 

( )xm x , bending moments ( )Ym x , ( )Zm x  and to warping moments (bimoments) 

( )P
x

m x
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m x
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m x
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x

m x
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 (Fig.1) [1]. 

Under the action of the aforementioned loading and of possible restraints, the beam 

member is leaded to nonuniform flexure and/or nonuniform torsion. It is well-known that 

the bending moment at a cross section represents the distribution of normal stresses due to 

bending (primary normal stresses P

xx ). Due to variation of this moment along the beam, 

shear stresses arise on the cross sectional plane which, contrary to Timoshenko theory 

exhibit a nonuniform distribution. These shear stresses will be referred to as primary (or 

St.Venant) shear stresses (
P

xy , P

xz ) and lead the cross section to warp (Fig.2b). Due to the 

nonuniform character of this warping along the beam secondary normal stresess S

xx  are 

developed (Fig.2c). These normal stresses are responsible for shear lag phenomenon and 

they are taken into account by employing an independent warping parameter multiplying a 

warping function, depending on the cross sectional configuration. The nonuniform 

distribution of secondary normal stresses S

xx  along the beam results is equilibrated by 

secondary shear stresses
S

xy , S

xz (Fig.2d). However, from Fig.3d it can be concluded in 

analogy to Timoshenko theory that 
S

xy , S

xz  arising from the use of the independent warping 

parameter fail to fulfill the boundary condition related to vanishing tractions xn  on the 

lateral surface of the beam. Thus, in the present study a modified stress field is applied 



 

with the aid of an additional warping function in order to “correct” S

xy , S

xz  (Fig.3e). The 

above remarks are also valid for the problem of nonuniform torsion taking into account 

secondary torsional shear deformation effect – STSDE [3,4]. In order to take into account 

torsional shear lag effects as well, the normal stress distribution S

xx  due to secondary 

torsional warping S

x  [4] is also taken into account. This distribution is equilibrated by 

corresponding tertiary shear stresses T

xz , T

xy  which, similarly with the case of shear lag 

analysis in flexure, require a correction. In the present study this is achieved by adding an 

additional torsional warping function. 
 

 

(a) 

 

(b) 

Fig. 1: Prismatic beam element (a) with a composite cross section of arbitrary shape 

occupying the two dimensional region   (b). 
  

Within the above described context, in order to take into account nonuniform flexural 

and torsional warping (including shear lag effect due to both flexure and torsion), in the 

study of the aforementioned element in each node at the element ends, four additional 

degrees of freedom are added to the well-known six DOFs of the classical three-

dimensional frame element. The additional DOFs include four independent parameters, 

namely x , Y , Z , x  multiplying a shear warping function in each direction ( Y , Z ) and 

two torsional warping functions ( x , x ), respectively. These DOFs describe the 

“intensities” of the corresponding cross sectional warpings along the beam length, while 

these warpings are defined by the corresponding warping function ( P

Y , P

Z , P

x , S

x ), 

depending only on the cross sectional configuration. The corresponding stress resultants of 

the aforementioned additional DOFs are the warping moments P
Y

M


, P
Z

M


, P
x

M


, S
x

M


 

(bimoments), arising from corresponding normal stress distributions. By this modification 

the developed element is enhanced with the capability of taking into account shear 

deformation and shear lag effects due to both flexure and torsion. Thus, the generalized 

local nodal displacement and nodal load vectors can be written as  
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In eqn. (1a) xu , yu , zu , x , Y , Z  describe the displacement and rotation components, while 

x , x , Y , Z  are the aforementioned independent warping parameters describing the 

nonuniform distribution of primary and secondary torsional and primary shear warping, 

respectively. Index i  denotes the i-th beam element, while indices j , k  refer to each 

element end. In eqn. (1b) N , yQ , zQ , xM  are the axial force ,x xN EAu , shear forces 

P S

i i iQ Q Q   ( ,i y z ) and twisting moment P S T

x x x xM M M M   , respectively at the 

element ends. j

iQ  ( ,i y z  , ,j P S ) are the primary and secondary parts of shear forces, 

while j

xM  ( , ,j P S T ) are the primary, secondary and tertiary parts of total twisting 

moment arising from the corresponding shear stress components presented in detail in [1]. 
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 are the warping moments due to independent warping parameters 

x , Y , Z , x , respectively, given as [1] 
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Primary normal stress due to bending  Primary shear stress ( ,
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(d) 

Secondary normal stress due to warping  Secondary shear stress – model A ( ,

S S P

xz Z Y zG   )  

 

 

 

(e) 

Secondary shear stress – model B ( ,

S S S

xz Z Y zG   )  

Fig. 2: Sequence of stress generation along the height of a rectangular cross section of a 

beam under flexure. 
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where  
,i

  denotes differentiation with respect to i  and ijI  ( , , , ,P S P P
x x Y Zi j     ) are 

warping constants given in [1,2]. P

Y , P

Z , P

x , S

x  indices denote the aforementioned 

primary shear and primary and secondary torsional warping functions [1].  

The nodal displacement and load vectors given in eqns. (1) are related with a 20x20 

local stiffness matrix ik    the coefficients 
i

jkk  ( , 1,2,...,20j k  ) of which are obtained by 

S
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solving a system of differential equations with respect to 
xu , yu , 

zu , 
x , 

Y , 
Z , 

x , 
Y , 

Z , 
x  formulated as presented in [1], subjected to the corresponding boundary conditions 

given as 
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by setting the external loading equal to zero and applying appropriate values to functions 

, , , , , , , ,i i i i i i i i i i                   ( 1,2,3i  ). According to the nodal load vector, assuming 

that the span of the beam is subjected to arbitrary loading as described above, the 

evaluation of  iF  is accomplished by solving again the aforementioned differential 

equations [1] for 1 1 1 1       1 1   1 1 1 1 1       , 2 3 2 3       

2 3 2      3 2 3 2 3 2          3 2 3 2        3 0   at 0,x l . 

As far as the numerical solution is concerned, the formulation of the advanced 20x20 

stiffness matrix and corresponding nodal load vector reduces in establishing the 

components xu , yu , zu , x , Y , Z , x , Y , Z , x  having continuous derivatives up to 

the second order with respect to x  at the interval  0, l  and up to the first order at 0,x l , 

satisfying the boundary value problem described in [1]. This problem is solved using the 

Analog Equation Method (AEM), a BEM based method. Application of the boundary 

element technique yields a system of linear coupled algebraic equations which can be 

solved without any difficulty. The geometric constants of the cross section [1,2] are 

evaluated employing a pure BEM approach, i.e. only boundary discretization of the cross 

section is used. 

 

 

4. APPLICATION 

 

A curved composite bridge deck (Fig.3a), clamped at its end points A, E and 

inhibiting deflection at points B, D, having a cross section consisting of a concrete 

( 7
1 ref 3.0 10E E kPa   , 0.2  ) plate stiffened by a steel beam ( 8

2 2.1 10E kPa  , 

0.2  ), forming a box-shaped section (Fig.3b), subjected to a vertical load 

600zP kN   at point C (Fig.3a) is studied. In Fig.4 deflection zu  along the composite 

bridge deck as obtained employing 20x20 stiffness matrix employing either uncorrected 

stress field (model A) or corrected stress field (model B) is presented  as compared with 

those obtained employing, 14x14 [19], as well as classic 12x12 [19] stiffness matrix. From 

the obtained results, the significant influence of transverse shear deformation can be 

verified (classic 12x12 stiffness matrix exhibits significant discrepancies). In Fig.5 
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 diagrams are presented and in Fig.6 the distribution of xx  along 

the boundary of the cross section at 40x m   is presented as compared to the one 

predicted by engineering beam theory (12x12 stiffness matrix). The discrepancy of 

maximum normal stress as compared to classical 12x12 stiffness matrix necessitates the 

inclusion of the additional degrees of freedom, in beam elements. 
 



 

 
 

(a) (b) 

Fig. 3: Plan view (a) and composite cross section (b) of curved bridge deck. 
 

 
Fig. 4: Deflection zu  of bridge deck. 

 

     

  
Fig. 5: YM , P

Y

M


, P
x

M


, S
x

M


 diagrams of bridge deck employing corrected shear 

stresses (model B). Values in brackets have been obtained employing 

uncorrected shear stresses (model A). 
 

 

12x12 matrix: 

 
max

3.8286E 03xx kPa     

(a) 



 

 

20x20 matrix - model B: 

 
max

4.3775E 03xx kPa     

(b) 

Fig. 10. Distribution of xx   over the boundary of the cross section of beam structure 

of example 4 at 40x   according to classic 12x12 stiffness matrix (a) and 

20x20 stiffness matrix – model B (b). 
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1. ΠΕΡΙΛΗΨΗ 

 

Στην παρούσα εργασία, παρουσιάζεται η μεθοδολογία για τη μόρφωση ενός διευρυμένου 

«20x20» μητρώου στιβαρότητας και του αντίστοιχου μητρώου επικόμβιας φόρτισης 

χωρικού στοιχείου δοκού τυχούσας σύμμικτης διατομής (η περίπτωση τυχούσας 

ομογενούς διατομής αντιμετωπίζεται ως ειδική περίπτωση) λαμβάνοντας υπόψη τη 

γενικευμένη επιρροή της ανομοιόμορφης στρέβλωσης (διατμητική υστέρηση από κάμψη 

και στρέψη). Η ανομοιόμορφη κατανομή των στρεβλώσεων που ευθύνεται για το 

φαινόμενο της διατμητικής υστέρησης λαμβάνεται υπόψη χρησιμοποιώντας τέσσερεις 

ανεξάρτητες παραμέτρους στρέβλωσης, οι οποίες πολλαπλασιάζουν δύο συναρτήσεις 

διατμητικής στρέβλωσης (μία σε κάθε διεύθυνση) και δύο συναρτήσεις στρεπτικής 

στρέβλωσης, αντίστοιχα, που προσδιορίζονται λύνοντας αντίστοιχα προβλήματα 

συνοριακών τιμών. Δέκα προβλήματα συνοριακών τιμών ως προς τα κινηματικά μεγέθη 

διατυπώνονται και λύνονται με χρήση μεθοδολογίας που βασίζεται στη Μέθοδο 

Συνοριακών Στοιχείων. Αξίζει εδώ να αναφερθεί ότι το πεδίο τάσεων που προκύπτει από 

το υιοθετούμενο πεδίο μετατοπίσεων οδηγεί σε παραβίαση της τοπικής εξίσωσης 

ισορροπίας κατά τη διαμήκη έννοια και της αντίστοιχης συνοριακής συνθήκης λόγω της 

ανακρίβειας που προκύπτει στις διατμητικές τάσεις. Συνεπώς, στην παρούσα εργασία, τα 

προβλήματα συνοριακών τιμών που επιλύονται διατυπώνονται χρησιμοποιώντας 

βελτιωμένο πεδίο τάσεων το οποίο προκύπτει με κατάλληλη διόρθωση των συνιστωσών 

διατμητικής τάσης. Οι συναρτήσεις στρέβλωσης καθώς και οι γεωμετρικές σταθερές, 

συμπεριλαμβανομένων και των ανώτερων σταθερών λόγω στρέβλωσης, υπολογίζονται με 

εφαρμογή της αμιγούς Μεθόδου Συνοριακών Στοιχείων (απαιτείται διακριτοποίηση μόνον 

του συνόρου της διατομής). Μέσω αριθμητικών εφαρμογών καταδεικνύονται οι 

αποκλίσεις που παρουσιάζουν τα κλασικά στοιχεία δοκού (12x12, 14x14 μητρώα 

στιβαρότητας) συγκρινόμενα με το παρών εξελιγμένο στοιχείο δοκού. 
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