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1. ABSTRACT

In this paper an “advanced” 20x20 stiffness matrix and the corresponding nodal load vector
of a beam element of arbitrary composite cross taking into account shear lag effects due to
both flexure and torsion is applied for the analysis of steel framed structures. Nonuniform
warping distributions, which are responsible for shear lag effects are taken into account by
employing four additional degrees of freedom.

2. INTRODUCTION

In engineering practice the analysis of spatial frames is frequently encountered. The
involved beam members of such structures are usually analyzed employing Euler-Bernoulli
or Timoshenko beam theories. Both theories maintain the assumption that cross sections
remain plane after deformation. Thus, the formulation remains simple; however it fails to
capture “shear lag” phenomenon which is associated with a significant modification of
normal stress distribution due to nonuniform shear warping [1,2]. In up-to-date regulations,
the significance of shear lag effect in flexure is recognized. However in order to simplify
the analysis, the “effective breadth” concept is recommended. This simplifying approach
may fail to capture satisfactorily the actual structural behavior of the member. Therefore, it
is necessary to include nonuniform shear warping effects in the analysis. Similar
considerations with the ones made for flexure could be also adopted for the problem of
torsion which is also very often encountered in the analysis of spatial frames (e.g. in
curved-in-plan bridges, buildings of complex geometry etc.). It is well-known, that a beam
undergeneral twisting loading and boundary conditions, is leaded to nonuniform torsion.
The major characteristic of this problem is the presence of normal stress due to primary
torsional warping. In an analogy with Timoshenko beam theory when shear deformation is
important, Secondary Torsional Shear Deformation Effect (STSDE) [3,4] has to be taken
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into account as well. The additional secondary torsional warping due to STSDE causes
similar effects with shear lag in flexure, i.e. a modification of the initial normal stress
distribution.

In the present study, an advanced 20x20 stiffness matrix and the corresponding nodal
load vector of a member of arbitrary cross section taking into account shear lag effects due
to both flexure and torsion, is constructed. Nonuniform warping distributions, which are
responsible for shear lag effects are taken into account by employing four independent
warping parameters, multiplying a shear warping function in each direction [1] and two
torsional warping functions, which are obtained by solving corresponding boundary value
problems. Ten boundary value problems with respect to kinematical components are
formulated and solved using the Analog Equation Method [5], a BEM based technique.
The warping functions and the geometric constants including the additional ones due to
warping are evaluated employing a pure BEM approach. The aforementioned problems are
formulated employing an improved stress field arising from the correction of shear stress
components.

3. STATEMENT OF THE PROBLEM

Consider a prismatic element of length | with an arbitrarily shaped composite cross
section consisting of materials in contact, each of which can surround a finite number of
inclusions, with modulus of elasticity E,, and shear modulus G,,, occupying the regions

Q, (m=L2,..,M) of the yz plane (Fig.1). The materials of these regions are assumed
homogeneous, isotropic and linearly elastic. CXYZ is the principal bending coordinate
system through centroid C, while y., z- are its coordinates with respect to Sxyz system
through shear center S. The beam element is subjected to arbitrarily distributed or
concentrated axial loading p,(X), transverse loading p,(x), p,(x), twisting moment

m, (x), bending moments my(x),m,(x) and to warping moments (bimoments)
m e (), m e (), m.e (), m,s (x) (Fig.1) [1]

Under the action of the aforementioned loading and of possible restraints, the beam
member is leaded to nonuniform flexure and/or nonuniform torsion. It is well-known that
the bending moment at a cross section represents the distribution of normal stresses due to

bending (primary normal stresses o ). Due to variation of this moment along the beam,

shear stresses arise on the cross sectional plane which, contrary to Timoshenko theory
exhibit a nonuniform distribution. These shear stresses will be referred to as primary (or

St.Venant) shear stresses (rfy ,7-) and lead the cross section to warp (Fig.2b). Due to the

nonuniform character of this warping along the beam secondary normal stresess o, are

developed (Fig.2c). These normal stresses are responsible for shear lag phenomenon and
they are taken into account by employing an independent warping parameter multiplying a
warping function, depending on the cross sectional configuration. The nonuniform

distribution of secondary normal stresses o, along the beam results is equilibrated by

S

Xy,rfz (Fig.2d). However, from Fig.3d it can be concluded in

secondary shear stressesz

S
Xy !

parameter fail to fulfill the boundary condition related to vanishing tractions z,, on the
lateral surface of the beam. Thus, in the present study a modified stress field is applied

analogy to Timoshenko theory that 7 ,z> arising from the use of the independent warping



with the aid of an additional warping function in order to “correct” rfy, > (Fig.3e). The

above remarks are also valid for the problem of nonuniform torsion taking into account
secondary torsional shear deformation effect — STSDE [3,4]. In order to take into account

torsional shear lag effects as well, the normal stress distribution o due to secondary

torsional warping ¢ [4] is also taken into account. This distribution is equilibrated by

T T

corresponding tertiary shear stresses z,,, z,, Which, similarly with the case of shear lag

analysis in flexure, require a correction. In the present study this is achieved by adding an
additional torsional warping function.

C: Centroid e =S \t‘
S: Shear center —— \\\\
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Fig. 1: Prismatic beam element (a) with a composite cross section of arbitrary shape
occupying the two dimensional region Q (b).

Within the above described context, in order to take into account nonuniform flexural
and torsional warping (including shear lag effect due to both flexure and torsion), in the
study of the aforementioned element in each node at the element ends, four additional
degrees of freedom are added to the well-known six DOFs of the classical three-
dimensional frame element. The additional DOFs include four independent parameters,
namely n,,n,,n,,&, multiplying a shear warping function in each direction (7, ,7,) and
two torsional warping functions (7,,&,), respectively. These DOFs describe the
“intensities” of the corresponding cross sectional warpings along the beam length, while
these warpings are defined by the corresponding warping function (¢}, ¢!, 00, ¢?),
depending only on the cross sectional configuration. The corresponding stress resultants of
the aforementioned additional DOFs are the warping moments MN’M@”M«:E’M(/:E
(bimoments), arising from corresponding normal stress distributions. By this modification
the developed element is enhanced with the capability of taking into account shear

deformation and shear lag effects due to both flexure and torsion. Thus, the generalized
local nodal displacement and nodal load vectors can be written as
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In egn. (1a) u,,u,,u,,
n..¢..n,n, are the aforementioned independent warping parameters describing the

nonuniform distribution of primary and secondary torsional and primary shear warping,
respectively. Index i denotes the i-th beam element, while indices j,k refer to each

element end. In egn. (1b) N,Q,,Q,,M, are the axial force N =EAu, , shear forces
Q=Q"+Q° (i=y,z) and twisting moment M, =M’ +M>+M]

X !

0.0, 0, describe the displacement and rotation components, while

respectively at the
element ends. Q' (i=vy,z, j=P,S) are the primary and secondary parts of shear forces,

while M) (j=P,S,T) are the primary, secondary and tertiary parts of total twisting

moment arising from the corresponding shear stress components presented in detail in [1].
M(pP , M%p : M(pP , Mq)S are the warping moments due to independent warping parameters

n..My 1, ,<,, respectively, given as [1]

é§ =) £\ De (b)
- (0 =E6,Z) () - 4 |

Primary normal stress due to bending Primary shear stress (2' =Gy, (DP ,)
[ ==

S |
Oxx }

(@

T (O-fx = E?]waf) (C) -

Secondary normal stress due to warping = Secondary shear stress — model A (Z'S _ GVZSCDYP )

DR

Secondary shear stress — model B (r sCI)S

Fig. 2: Sequence of stress generation along the height of a rectangular cross section of a
beam under flexure.
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where ()I denotes differentiation with respect to i and Ij; (i,j:gof,qof,gzﬁ’,g);) are

warping constants given in [1,2]. ¢ ,¢s .9 ,¢; indices denote the aforementioned

primary shear and primary and secondary torsional warping functions [1].
The nodal displacement and load vectors given in eqgns. (1) are related with a 20x20

local stiffness matrix [k‘] the coefficients k}k (J,k=12,...,20) of which are obtained by



solving a system of differential equations with respect to u,, u,, u,, 6,, 6, 6,, n,, 1,

n,, & formulated as presented in [1], subjected to the corresponding boundary conditions
given as

au +a,N=a, pBu +BQ =6 nu,+7,Q, =7 /Blez +BZMZ ZBa (3a,b,c,d)
7710Y+772MY :773 Bﬂ?z+ﬁ~’z'\/|¢; ::B3 77177Y+772M(WP :773 510x+52|v|x:53 (3e,f,g,h)
Sl +EM o =8, 65 +6M =4, (3i.J)

by setting the external loading equal to zero and applying appropriate values to functions
a, B, B.B.v. 7. 7.6.6,6 (i=1,2,3). According to the nodal load vector, assuming
that the span of the beam is subjected to arbitrary loading as described above, the
evaluation of {F‘} is accomplished by solving again the aforementioned differential
equations [1] for a=f=B=f=n=n=7=0=6=56=1 a=0=F,=F
:ﬁz zﬁs =ﬂ~2 = Bs =7,=7s :772 :773 =0,=0, =é_‘z :53 :52 = 53 =0 at x=0,1.

As far as the numerical solution is concerned, the formulation of the advanced 20x20

stiffness matrix and corresponding nodal load vector reduces in establishing the

components u,, u,, u,, 6., &, 6,, n,, n,, n,, & having continuous derivatives up to

the second order with respect to x at the interval (O,I) and up to the first order at x=0,1,

satisfying the boundary value problem described in [1]. This problem is solved using the
Analog Equation Method (AEM), a BEM based method. Application of the boundary
element technique yields a system of linear coupled algebraic equations which can be
solved without any difficulty. The geometric constants of the cross section [1,2] are
evaluated employing a pure BEM approach, i.e. only boundary discretization of the cross
section is used.

4. APPLICATION

A curved composite bridge deck (Fig.3a), clamped at its end points A, E and
inhibiting deflection at points B, D, having a cross section consisting of a concrete

(E, =E,s =3.0x10"kPa,v=0.2) plate stiffened by a steel beam (E, =2.1x10%kPa,

v=0.2), forming a box-shaped section (Fig.3b), subjected to a vertical load
P, =—600kN at point C (Fig.3a) is studied. In Fig.4 deflection u, along the composite

bridge deck as obtained employing 20x20 stiffness matrix employing either uncorrected
stress field (model A) or corrected stress field (model B) is presented as compared with
those obtained employing, 14x14 [19], as well as classic 12x12 [19] stiffness matrix. From
the obtained results, the significant influence of transverse shear deformation can be
verified (classic 12x12 stiffness matrix exhibits significant discrepancies). In Fig.5

My, M(pp , M(pr , M(ps diagrams are presented and in Fig.6 the distribution of o,, along

the boundary of the cross section at X=40m is presented as compared to the one
predicted by engineering beam theory (12x12 stiffness matrix). The discrepancy of
maximum normal stress as compared to classical 12x12 stiffness matrix necessitates the
inclusion of the additional degrees of freedom, in beam elements.
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Fig. 3: Plan view (a) and composite cross section (b) of curved bridge deck.

T T
| |
| | | |
0 T T T T
2 40 & &
| | |
| | |
| | |
00005 - — — — — — — — — — P N e 2 T
| |
3 | |
N
S | |
0001 + — — — — — — — — — el —_—————— STttt Tt
| |
\\ / 12x12 matrix,
10,0015 4 & = g Sapountzakis and Mokos [19]
P . 14x14 matrix with shear deformation,
- (Y Sapountzakis and Mokos [19]
| \.‘/ @ 20x20 matrix - model B, present study
| — = 20x20 matrix - model A, present study
-0.002 -

Mo

20x20 Matrix (model B)

Fig. 5: MY,M@:,M(OP,M(/)S diagrams of bridge deck employing corrected shear

stresses (model B). Values in brackets have been obtained employing
uncorrected shear stresses (model A).

782 3850.3782

BETBPOT T

12x12 matrix:
(O )y, = 3-8286E +03kPa
ax

(@)




a1 1.0793

20x20 matrix - model B:
(O ) oy =43775E +03kPa
ax

(b)

4304.9005

Fig. 10. Distribution of o,, over the boundary of the cross section of beam structure

of example 4 at X =40 according to classic 12x12 stiffness matrix (a) and
20x20 stiffness matrix — model B (b).
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1. IEPIAHYH

Ymv mapovoa epyacia, mapovotdletal n pebodoroyia yio ™ HOPP®ON EVOS SIELPVUEVOD
«20x20» pnTp®ov oTPapdTNTAG KOl TOL OVTIGTOWOL UNTPOOL EMKOUPLOG POPTIONG
YOPIKOV OTOEIOL d0KOD TLYOVCHG OCUUWIKING Owtopng (N mepintwon  TLYoVGOG
OLOYEVOLG OlTOUNG avTipetomiletolr o¢ €K mepintmon) Aapfdavoviag vmoyn
YEVIKEVUEVT] EMPPOT| TNG AVOUOLOLOPPNG OTPEPA®ONG (SLoTUNTIKY VOTEPMOT Ad KA
kot otpéyn). H avopoidpopen xoatavoun tov otpefAdcewmv mov gvbivetol Yo TO
QOVOUEVO NG OWTUNTIKNG VOTEPNONG AQUPAVETOL VITOYN YPNCLOTOIDVTAG TEGCEPELS
avelhptmreg mopapnéTpovs oTpéfAmong, ot omoieg moAlamiacidlovv 600 GUVAPTAGELS
dwtuntikng otpéfroong (wo oe kdbe devbuvom) kot dVO0 GLVOPTAGELS CTPEMTIKNG
otpéfhoong, avtiototya, mov mpoodopiloviar Avvoviag avtiotoryo  mTpoPAnuata
CLUVOPLOKAOV TIU®V. Aéka TPOPANUOTO CUVOPIIKAOV TIUOV O TPOS TO KIVIUOTIKA HeyEom
dwtumdvovtar Kot Advovion pe ypnorm pebodoroyiog mov Poociletar otm MéBodo
Yuvoplak®v Zroryeiov. A&ilel ed® va avaeepBel 6TL T0 TEdI0 TAGEMY TOL TPOKLITEL OO
170 vioBeTovpevo medio petotomicemv odnyel oe mopafiocn g Tomikng e&icmong
1GOPPOTHOG KATA TN SLOUNKT EVVOl0L KOl TNG GVTIGTOYNG GLVOPLOKNG SLVONKNG AOY® TNG
avakpiPelag Tov TPOKVTTEL GTIC SATUNTIKES TAGEIS. LVUVENMG, GTNV TOPOVCA EPYOGI, TO.
TPOPANUOTA  GLVOPLOK®V T®V 7OV  ETAVOVTOL  OTULTAOVOVIOL  YPTCLUOTOIDVTOGC
BeAtiopévo medio ThoemV T0 0m0l0 TPOKVTTEL Pe KOTAAANAN d1OpO®OT T®V GLVIGTOCHV
dwtuntikng téong. Ov cvvaptioel otpéProone kabmdg kol ot YEWUETPIKEG oTabepEc,
CUUTEPTAOUPAVOUEVOV KOl TOV AVATEP®OV oTAdep®V AdY® oTpéPAmong, vroloyilovtan pe
eQaproyn TS aptryovc Mebodov Zvuvoprokav Xtotryeiov (amatteital dtakpitonoinon povov
TOV OLVOPOL NG OwTopng). MéEcm  aplBENTIKOV  EPAPUOYADV KOTAOEIKVDOVIOL Ol
amokAicelg mov mopovolalovy To KAAoWKE ototyeia dokov (12x12, 14x14 untpoa
oTPapdTNTOG) GLYKPIVOUEVA LE TO TOPADV eEEMYUEVO GTOLYEID HOKOV.
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