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1. ABSTRACT

In this paper an advanced computational tool for the inelastic analysis of steel
structures accounting for axial-shear—flexure interaction, is presented. The proposed
formulation is based on Boundary Element Method (BEM). The steel member is
subjected to arbitrarily distributed or concentrated vertical loading along its length,
while its edges are subjected to the most general boundary conditions. A displacement
based procedure is employed and inelastic redistribution is modeled through a
distributed plasticity model exploiting material constitutive laws and numerical
integration over the cross-sections. An incremental - iterative solution strategy along
with an efficient iterative process are employed, while the arising boundary value
problem is solved employing the boundary element method. The proposed
computational tool is employed for the analysis of representative numerical
applications, illustrating its efficiency and accuracy.

2.  INTRODUCTION

Design of steel structures based on elastic analysis are most likely to be extremely
conservative not only due to significant difference between initial yield and full
plastification in a cross section, but also due to the unaccounted for yet significant
reserves of strength that are not mobilized in redundant members until after inelastic
redistribution takes place. Thus, material nonlinearity is important for investigating
the ultimate strength of a steel member that resists bending loading, while distributed
plasticity models are acknowledged in the literature [1-3] to capture more rigorously
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material nonlinearities than cross sectional stress resultant approaches [4] or lumped
plasticity idealizations [5, 6].

In this paper, a boundary element method is developed for the inelastic analysis of
steel members accounting for axial-shear—flexure interaction. The essential features
and novel aspects of the present formulation compared with previous ones are
summarized as follows.

i. Axial, shear and flexure interaction is incorporated in this formulation.

ii. The shear deformation effect in the steel member is taken into account while
shear locking is avoided by employing the same order of approximation for both
the rotation due to bending and the derivative of the deflection.

iii. The formulation is a displacement based one taking into account inelastic
redistribution along the member axis by exploiting material constitutive laws and
numerical integration over the cross sections (distributed plasticity approach).

iv. An incremental - iterative solution strategy is adopted to restore global
equilibrium of the beam.

v. The beam is supported by the most general nonlinear boundary conditions
including elastic support or restrain.

vi. To the authors’ knowledge, a BEM approach has not yet been used for the
solution of the aforementioned problem, while the developed procedure retains
most of the advantages of a BEM solution even though domain discretization is
required.

Numerical results are worked out to illustrate the method, demonstrate its efficiency

and accuracy.

3.  STATEMENT OF THE PROBLEM

Let us consider a steel member of length | of arbitrary constant cross-section having
at least one axis of symmetry (z-axis), occupying the two dimensional multiply

connected region 2 of the y,z plane bounded by the Fj(j:1,2,...,K) boundary
curves, which are piecewise smooth, i.e. they may have a finite number of corners.
The normal stress-strain relationship of the material is assumed to be elastic-plastic-
strain hardening with initial modulus of elasticity Eg, shear modulus G, post-yield
modulus of elasticity E;, yield stress oyq and yield strain &yy. The member is
subjected to the combined action of arbitrarily distributed or concentrated transverse
loading p, (x) and bending moment m, (x) acting in the x direction.

3.1 Equations of global equilibrium

To establish global equilibrium equations, the principle of virtual work neglecting
body forces is employed, that is

[ (SO + Sy 7y ) AV = [ (t,8u+t,6W)dF (1)
Y F

where the integral quantities represent the strain energy and the external load work

while &(-) denotes virtual quantities, V is the volume and F is the surface of the



member. After conducting some algebraic manipulations, the global equilibrium
equations are obtained as
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where u, w are the displacement components of the centroid , &, is the angle of
rotation due to bending of the cross-section with respect to its centroid, N,Q,,M,, are

the stress resultant corresponding to the internal axial force, shear force and bending
moment, respectively, whilea;,b;,¢; (i=1,2,3) are functions specified at the member
ends.

3.2 Integral Representations — Numerical Solution

According to the precedent analysis, the inelastic problem of steel members reduces
to establishing the displacement components satisfying the boundary value problem
described by the governing differential eq. (2-4) along the boundary conditions (5-7).
This boundary value problem is solved employing BEM [7], as this is developed in
[8] for the solution of second order differential equation with constant coefficients,
after some modifications.

4.  NUMERICAL EXAMPLES

The influence of the axial-shear—flexure coupling on the behavior of the steel
structures is investigated in this example. For this purpose, an I-shaped cross section
beam of length 1 =2m, has been studied. The geometric properties of the selected
cross section are given in Table 1, while the beam’s material is considered to be
elastic-perfectly plastic with modulus of elasticity E =213.4GPa, shear modulus



G =82GPa and yielding stress o, =285MPa. The beam is either clamed of fixed-

pinned supported, while it is subjected to monotonically increasing uniformly
distributed load. The beam is discretized with 22 linear longitudinal elements, 43
quadrilateral cells (12 layers in the wed and 2 in each flange) and a 1x1 Gauss
integration scheme for each cell.

Total height h=0.3m Flange width ty =0.02m

Total width b=0.3m Web width t, =0.01m

Moment of _ 25 0247 x 105 m? Shear Correction 2 —5.3897
Inertia Factor ‘

Table 1. Geometric properties of the I-shaped cross section

In Fig. 1(a,b) the load-displacement curves are presented, performing -either
geometrically linear or nonlinear analysis, for both the boundary condition cases. The
results are compared with those obtained from a FEM model implemented in NX
Nastran [9] by employing 2400 quadrilateral shell elements. Excellent convergence
between the results is observed. In the same figures the von Mises stress o,

distribution is also presented illustrating the plastification of the wed, as well as the
non-symmetry of the normal stresses due to the developed axial force. Additionally,
the flexure-only response is presented in these figures. Since the beam yields in shear,
the Euler-Bernoulli model fails to capture the nonlinear response and overestimates
the collapse load of approximately 320% for the clamed and 256% for the fixed-
pinned boundary conditions.
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Fig 1. Midpoint load—displacement curve of the clamed (a)and fixed-pinned (b) beam.

The main reason for that divergence is its inability to predict the exact collapse
mechanism. This can be also evident from the von Mises stress distribution contour
diagram presented in Fig 2. In more detail, Fig. 2(a) show the stress distribution along
the length of the web for geometrically nonlinear analysis as compared with those
obtained from the shell model [9], while in Fig. 2 (b) the same results are resented for



geometrically linear analysis. From this figure, the predominant shear character of the
collapse mechanism is observed while the accuracy of the proposed beam formulation
is verified.
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Fig.2 von Mises stress distribution contour diagrams along the length of the web for
geometrically nonlinear (a) & linear (b) analysis.

5.  CONCLUDING REMARKS

In this paper, BEM approach is developed for the inelastic analysis of steel members
accounting for axial-shear—flexure interaction. The main conclusions that can be
drawn from this investigation are:

a. The proposed beam formulation is capable of obtaining results of high accuracy,
as verified by comparing with 2D/3D FEM models, with minimum computational
cost. Its advantageous character over more refined approaches is also enhanced
by the following:



b)

c)
d)

The developed beam formulation reduces significantly modeling effort
(shell/solid models require cumbersome pre-processing even in relatively
simple cases).

It permits isolation of structural phenomena and results interpretation
(quantities such as stress resultants etc. are also evaluated in contrast to
shell/solid model which yields only displacements and stress components).

It allows straightforward model handling (boundary conditions and external
loading are easily simulated).

It facilitates parametric analyses (solid modeling often requires construction of
multiple models).

Accurate results are obtained using a relatively small number of nodal points
across the longitudinal axis.

The interaction between shear and flexure is of paramount importance in the
inelastic analysis of steel structures.

The influence of the geometrically nonlinear analysis is confirmed.
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HHEPIAHYH

Ymv mapovoa epyacic, mapovoidletor n pebodoroyio Yoo T avamnTvén cTotyEiov
d0KOV Y10 TNV OVEAUGTIKY] AVOADGT KOTAGKELDV amd ydAvPa, Aapupdvoviag vrdyn
™MV OAMAETIOpACT OEOVIKNG, TEUVOLCOS KOl KOUTTIKNG pomne. H mpotevdpevn
uebodoroyia Paciletar ot MéBodo Zuvvoplakmdv Xtoryeiov (BEM). To dopukd
oTol(El0, TLYOVONG STOUNG HOVIAG GUUUETPIOG, VTOKELTOL OTIC TAEOV YEVIKEG UM
YPOUUIKEG CLVOPLOKES GLVONKES, evd Kotd TV avaivorn AapPavetor veoéyrn 1o
QOWVOUEVO  JTUNTIKNG Tapopudpemong pe t Ponbeia g Bewplag dokod
Timoshenko, 1 omoia cuvvmoroyilel upeca 10 EAIVOUEVO WTO HEG® doPBOTIKOV
ocvuvtedeotov Owdtunong. To otoryelo vmokertar o€ Tvyoio KATOVEUNUEVO T)/KOL
ovykevipouéva afovikd kol eykapoto eoptio. Ot e€iowoelg 1ooppomiog e€dyovran
TNV TOPAUOPP®UEVT] KATAGTACT] GUVLTOAOYILOVTOG TN YEOUETPIKN LN YPOLUIKOTNTO
AMyo tov  petpiog  peydAwv  petatomicewv. Ol TAOGTIKEG TAPAUOPPDOCELS
npocdopilovial HEC® TPOCOUOIMUOTOS KaToveEUNUEVNG TAaoTikotntog (distributed
plasticity model) ypnoiponoidviog tpdldoToTeg KataoTatikéc oyéoelc. Ot oyéoelg
avTég oAokAnpdvovtol pe tn Pondewd KatdAAnAng emavoinmrikng pebédov. H
OOTEAECUATIKOTNTA KOL TO €0POG EPAPLOYNG TS HeBddov mapovsidleTon péca omd
TopadelypLoTa Le 1W1HTEPO TPOKTIKO EVOLAPEPOV.
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