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1. ABSTRACT 
 

In this paper an advanced computational tool for the inelastic analysis of steel 

structures accounting for axial-shear–flexure interaction, is presented. The proposed 

formulation is based on Boundary Element Method (BEM). The steel member is 

subjected to arbitrarily distributed or concentrated vertical loading along its length, 

while its edges are subjected to the most general boundary conditions. A displacement 

based procedure is employed and inelastic redistribution is modeled through a 

distributed plasticity model exploiting material constitutive laws and numerical 

integration over the cross-sections. An incremental - iterative solution strategy along 

with an efficient iterative process are employed, while the arising boundary value 

problem is solved employing the boundary element method. The proposed 

computational tool is employed for the analysis of representative numerical 

applications, illustrating its efficiency and accuracy. 

 

 

2. INTRODUCTION 

 

Design of steel structures based on elastic analysis are most likely to be extremely 

conservative not only due to significant difference between initial yield and full 

plastification in a cross section, but also due to the unaccounted for yet significant 

reserves of strength that are not mobilized in redundant members until after inelastic 

redistribution takes place. Thus, material nonlinearity is important for investigating 

the ultimate strength of a steel member that resists bending loading, while distributed 

plasticity models are acknowledged in the literature [1-3] to capture more rigorously 
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material nonlinearities than cross sectional stress resultant approaches [4] or lumped 

plasticity idealizations [5, 6]. 

 

In this paper, a boundary element method is developed for the inelastic analysis of 

steel members accounting for axial-shear–flexure interaction. The essential features 

and novel aspects of the present formulation compared with previous ones are 

summarized as follows. 

i. Axial, shear and flexure interaction is incorporated in this formulation.   

ii. The shear deformation effect in the steel member is taken into account while 

shear locking is avoided by employing the same order of approximation for both 

the rotation due to bending and the derivative of the deflection. 

iii. The formulation is a displacement based one taking into account inelastic 

redistribution along the member axis by exploiting material constitutive laws and 

numerical integration over the cross sections (distributed plasticity approach). 

iv. An incremental - iterative solution strategy is adopted to restore global 

equilibrium of the beam.  

v. The beam is supported by the most general nonlinear boundary conditions 

including elastic support or restrain. 

vi. To the authors’ knowledge, a BEM approach has not yet been used for the 

solution of the aforementioned problem, while the developed procedure retains 

most of the advantages of a BEM solution even though domain discretization is 

required.  

Numerical results are worked out to illustrate the method, demonstrate its efficiency 

and accuracy. 

 

 

3. STATEMENT OF THE PROBLEM 

 

Let us consider a steel member of length l  of arbitrary constant cross-section having 

at least one axis of symmetry (z-axis), occupying the two dimensional multiply 

connected region   of the y,z  plane bounded by the  j j 1,2,...,K   boundary 

curves, which are piecewise smooth, i.e. they may have a finite number of corners. 

The normal stress-strain relationship of the material is assumed to be elastic-plastic-

strain hardening with initial modulus of elasticity 0E , shear modulus G, post-yield 

modulus of elasticity tE , yield stress 0Y  and yield strain Y0 . The member is 

subjected to the combined action of arbitrarily distributed or concentrated transverse 

loading  zp x  and bending moment  ym x  acting in the x  direction. 

 

 

3.1 Equations of global equilibrium 

 

To establish global equilibrium equations, the principle of virtual work neglecting 

body forces is employed, that is  

   xx xx xz xz x z
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where the integral quantities represent the strain energy and the external load work 

while     denotes virtual quantities, V  is the volume and F  is the surface of the 



member. After conducting some algebraic manipulations, the global equilibrium 

equations are obtained as 
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along with its corresponding boundary conditions 
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where u , w  are the displacement components of the centroid , y  is the angle of 

rotation due to bending of the cross-section with respect to its centroid, , ,z yN Q M  are 

the stress resultant corresponding to the internal axial force, shear force and bending 

moment, respectively, while i i ia ,b ,c   ( i 1,2,3 )  are functions specified at the member 

ends. 

 

 

3.2  Integral Representations – Numerical Solution 

 

According to the precedent analysis, the inelastic problem of steel members reduces 

to establishing the displacement components satisfying the boundary value problem 

described by the governing differential eq. (2-4) along the boundary conditions (5-7). 

This boundary value problem is solved employing BEM [7], as this is developed in 

[8] for the solution of second order differential equation with constant coefficients, 

after some modifications. 

 

 

4. NUMERICAL EXAMPLES 

 

The influence of the axial-shear–flexure coupling on the behavior of the steel 

structures is investigated in this example. For this purpose, an I-shaped cross section 

beam of length 2l m , has been studied. The geometric properties of the selected 

cross section are given in Table 1, while the beam’s material is considered to be 

elastic-perfectly plastic with modulus of elasticity 213.4E GPa , shear modulus 



82G GPa  and yielding stress 285y MPa  . The beam is either clamed of fixed-

pinned supported, while it is subjected to monotonically increasing uniformly 

distributed load. The beam is discretized with 22 linear longitudinal elements, 43 

quadrilateral cells (12 layers in the wed and 2 in each flange) and a 1 1  Gauss 

integration scheme for each cell. 

 

Total height 0.3h m  Flange width 0.02ft m  

Total width 0.3b m  Web width 0.01wt m  

Moment of 

Inertia  
-5 425.0247 10yI m   

Shear Correction 

Factor  
5.3897za   

 

Table 1. Geometric properties of the I-shaped cross section 

 

In Fig. 1(a,b) the load-displacement curves are presented, performing either 

geometrically linear or nonlinear analysis, for both the boundary condition cases. The 

results are compared with those obtained from a FEM model implemented in NX 

Nastran [9] by employing 2400 quadrilateral shell elements. Excellent convergence 

between the results is observed. In the same figures the von Mises stress 
vM  

distribution is also presented illustrating the plastification of the wed, as well as the 

non-symmetry of the normal stresses due to the developed axial force. Additionally, 

the flexure-only response is presented in these figures. Since the beam yields in shear, 

the Euler-Bernoulli model fails to capture the nonlinear response and overestimates 

the collapse load of approximately 320%  for the clamed and 256%  for the fixed-

pinned boundary conditions. 

 

  
 

Fig 1. Midpoint load–displacement curve of the clamed (a)and fixed-pinned (b) beam. 

 

The main reason for that divergence is its inability to predict the exact collapse 

mechanism. This can be also evident from the von Mises stress distribution contour 

diagram presented in Fig 2. In more detail, Fig. 2(a) show the stress distribution along 

the length of the web for geometrically nonlinear analysis as compared with those 

obtained from the shell model [9], while in Fig. 2 (b) the same results are resented for 



geometrically linear analysis. From this figure, the predominant shear character of the 

collapse mechanism is observed while the accuracy of the proposed beam formulation 

is verified.  

 

 
Present Study 

 
(a) 

 
FEM Shell Model Nastran [9] 

 
Present Study 

 
(b) 

 
FEM Shell Model Nastran [9] 

 

Fig.2 von Mises stress distribution contour diagrams along the length of the web for 

geometrically nonlinear (a) & linear (b) analysis. 

 

 

5. CONCLUDING REMARKS 

 

In this paper, BEM approach is developed for the inelastic analysis of steel members 

accounting for axial-shear–flexure interaction. The main conclusions that can be 

drawn from this investigation are: 

a. The proposed beam formulation is capable of obtaining results of high accuracy, 

as verified by comparing with 2D/3D FEM models, with minimum computational 

cost. Its advantageous character over more refined approaches is also enhanced 

by the following:  
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 The developed beam formulation reduces significantly modeling effort 

(shell/solid models require cumbersome pre-processing even in relatively 

simple cases). 

 It permits isolation of structural phenomena and results interpretation 

(quantities such as stress resultants etc. are also evaluated in contrast to 

shell/solid model which yields only displacements and stress components). 

 It allows straightforward model handling (boundary conditions and external 

loading are easily simulated). 

 It facilitates parametric analyses (solid modeling often requires construction of 

multiple models). 

b) Accurate results are obtained using a relatively small number of nodal points 

across the longitudinal axis. 

c) The interaction between shear and flexure is of paramount importance in the 

inelastic analysis of steel structures. 

d) The influence of the geometrically nonlinear analysis is confirmed. 
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ΠΕΡΙΛΗΨΗ 

 
Στην παρούσα εργασία, παρουσιάζεται η μεθοδολογία για τη ανάπτυξη στοιχείου 

δοκού για την ανελαστική ανάλυση κατασκευών από χάλυβα, λαμβάνοντας υπόψη 

την αλληλεπίδραση αξονικής, τέμνουσας και καμπτικής ροπής. Η προτεινόμενη 

μεθοδολογία βασίζεται στη Μέθοδο Συνοριακών Στοιχείων (ΒΕΜ). Το δομικό 

στοιχείο, τυχούσης διατομής μονής συμμετρίας, υπόκειται στις πλέον γενικές μη 

γραμμικές συνοριακές συνθήκες, ενώ κατά την ανάλυση λαμβάνεται υπόψη το 

φαινόμενο διατμητικής παραμόρφωσης με τη βοήθεια της θεωρίας δοκού 

Timoshenko, η οποία συνυπολογίζει έμμεσα το φαινόμενο αυτό μέσω διορθωτικών 

συντελεστών διάτμησης. Το στοιχείο υπόκειται σε τυχαία κατανεμημένα ή/και 

συγκεντρωμένα αξονικά και εγκάρσια φορτία. Οι εξισώσεις ισορροπίας εξάγονται 

στην παραμορφωμένη κατάσταση συνυπολογίζοντας τη γεωμετρική μη γραμμικότητα 

λόγω των μετρίως μεγάλων μετατοπίσεων. Οι πλαστικές παραμορφώσεις 

προσδιορίζονται μέσω προσομοιώματος κατανεμημένης πλαστικότητας (distributed 

plasticity model) χρησιμοποιώντας τριδιάστατες καταστατικές σχέσεις. Οι σχέσεις 

αυτές ολοκληρώνονται με τη βοήθεια κατάλληλης επαναληπτικής μεθόδου. Η 

αποτελεσματικότητα και το εύρος εφαρμογής της μεθόδου παρουσιάζεται μέσα από 

παραδείγματα με ιδιαίτερο πρακτικό ενδιαφέρον.  
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