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1. ABSTRACT 
 

In this paper the hysteretic beam element proposed by Triantafyllou and Koumousis 
[1]

 is 

extended to account for stiffness degradation, strength deterioration and pinching 

phenomena. The behavior of the element is governed by the Bouc-Wen model of hysteresis 

while stiffness and strength degradation are based on Baber and Wen model 
[2] 

and 

pinching on Foliente’s model 
[3]

. The formulation is based on additional hysteretic degrees 

of freedom which are considered as hysteretic curvatures and hysteretic axial deformations 

of the cross-sections. The entire set of governing equations of the structure is solved 

simultaneously by converting the system into state space form. This consists of the linear 

global equations of motion and the nonlinear local constitutive evolutionary equations for 

every element. Furthermore, degradation phenomena (related to material, structural 

member and connection behavior) are treated in a unified manner and are easily controlled 

through the model parameters at the element level. Numerical results are presented which 

are compared with existing experimental data demonstrating the efficacy of the proposed 

element in the analysis of steel structures. 
 
 
2. INTRODUCTION 

 

Hysteresis is a phenomenon where a system’s response depends not only on its current 

state but also on the history of previous states. It is a nonlinear phenomenon usually 

considered as rate-independent. Several hysteretic models have been developed in the past 



 

to address hysteresis which can be divided into two categories, the multi-segmental models 

and smooth models. 

 

Multi-segmental models, such as bilinear, trilinear and other multi-linear models preceded 

the smooth ones and define the behavior in piecewise linear stages such as the initial 

elastic, yielding, hardening/softening stages with unloading and reloading branches. 

Examples of such models are those proposed by Clough (1966), Τakeda (Takeda et al. 

1970) 
[8]

 and Park (Park et al. 1987) 
[9]

 among others. 

 

On the other hand, smooth hysteretic models are based on continuous-smooth change of 

stiffness after yield and can accommodate degradation phenomena. They are able to model 

different types of hysteretic behavior and are based on a smooth hysteretic function and a 

set of user defined parameters. Bouc-Wen model belongs to this category and has been 

used widely in different applications. Extensions of this model are the Baber – Noori 

(1985) 
[6]

, Baber – Wen (1981) 
[2]

, Foliente (1995) 
[3]

 and Sivaselvan-Reinhorn model 

(2000) 
[7]

 and more recently the one by Kottari et al. (2014) 
[12]

. 

 

Under cyclic loading the phenomena of stiffness degradation, strength deterioration and 

pinching are usually manifested. These are caused by plastic regions being created and 

extended in later loading cycles together with local buckling regions, which lead to 

stiffness and strength loss. Pinching is the sudden loss of stiffness resulting in loops that 

are thinner in middle range than at the ends. It is caused by the loosening and slipping of 

joints in steel structures. In this paper the models proposed by Baber and Wen (1981)
 [2]

 are 

employed for stiffness and strength degradation together with the one by Foliente (1995)
 [3]

 

for pinching. 
 
 
3. THE HYSTERETIC BEAM ELEMENT WITH DEGRADATIONS 
 

For the 2D hysteretic beam element the inelastic moment-curvature relation and axial 

force-axial centerline strain relation at a cross section at a distance s from the start node are 

expressed as follows: 
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The hysteretic parameter z is defined as the hysteretic part of the curvature regarding the 

bending degrees of freedom and zu is the hysteretic part of the axial centerline deformation. 

The Bouc–Wen hysteretic differential equations with degradations are expressed as: 
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where vs is the parameter that controls the strength deterioration and ns is the parameter 

controlling stiffness degradation and h is the parameter controlling pinching. These 

parameters are functions of the hysteretic energy dissipation (the energy dissipated by the 

hysteretic spring) and are defined by the following relations 
[3]

: 
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Additionally h is defined as: 
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Assuming Euler-Bernoulli beam theory curvature is approximated by: 
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where w is the transverse deflection of the beam. Substituting relation (7) into (1): 
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where ( , )s t can be regarded as a measure of an “equivalent generalized curvature”. 

Similarly considering the axial degrees of freedom: 
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where N is the axial force and 
0 ( , )s t  is the generalized axial centerline strain. 

 

3.1 DISCRETIZATION WITH FINITE ELEMENT METHOD 

 

The displacement field is interpolated using cubic polynomial shape functions 
[7]

: 
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where the nodal displacement vector {d} is defined as { } { }1 1 1 2 2 2θ θ
T

d u w u w= . 

The total curvature φ can be expressed as: 
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where the subscript ,ss denotes double differentiation with respect to the space variable s, 

and results in: 
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The hysteretic curvature is defined via the following linear shape functions
 [1] 

and can be 

written as: 
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the generalized curvature can therefore be expressed as: 
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Similarly the generalized centerline axial deformation is expressed as: 
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where the corresponding shape functions are
[1]

: 
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3.3 CONSTITUTIVE MATRIX RELATION 

 

By means of the principle of virtual work the following relation is obtained 
[1]

: 
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(17)  

Relation (17) expresses the equilibrium including both the elastic and hysteretic behavior 

of the element, where the axial forces are uncoupled with bending moments and shearing 

forces not only in the elastic but also in hysteretic part. This relation can be written as: 

         f 1a k d a h z    (18)  

where the first term represents the elastic behavior based on the reduced, plastic stiffness 

and the second term adds the hysteretic part. These basic matrices are defined at elemental 

level, are formed once in the beginning of the analysis and remain unchanged thereafter. 

Transforming to the global system using the 2D transformation matrix [Λ] we get: 
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3.4 EVOLUTION EQUATIONS 

 

The nonlinear behavior of the element is governed by the Bouc-Wen evolution equations 

(2) including stiffness, strength degradation and pinching. Equations (2) using (12) 

transformed to the global system (19) can be expressed as: 
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3.5 STATE SPACE FORMULATION 

 

For the dynamic problem the equation of motion for a multi degree of freedom structure 

can be established as follows: 
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where [M]s is the mass matrix, [C]s is the viscous damping matrix, [K]s is the stiffness 

matrix, containing only the elastic part of relation (17), [H]s is the hysteretic matrix of the 

structure and {P(t)} is the vector of external forces. These matrices are assembled 

following the direct stiffness method
 [4]

,
 
while the viscous damping matrix in general may 

be of the form of a Rayleigh damping matrix
 [5]

. The hysteretic behavior is defined at the 

element level in terms of hysteretic curvatures and centerline axial deformations from 

relations (20) and (21). The hysteretic matrix of each element, expressed in the global 

system, is appended to form the corresponding hysteretic matrix of the structure. Equations 



 

(22), together with evolution equations (20) and (21), fully describe the response of the 

system to a given external force and initial conditions. To solve the system of equations, 

this can be transformed into a set of first order differential equations in state space form. 

Introducing the vector of nodal velocities { u } as auxiliary unknown vector one can write 

the system the following form: 
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and G: 
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The operator G is a state dependent operator since Y contains the evolution equations of 

every element: 
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The above system, for specific dynamic loading is integrated using a variable-order solver 

based on the numerical differentiation formulas (NDFs) i.e. a multistep solver. 

 

 

4. NUMERICAL RESULTS 

 

To demonstrate the efficiency of the proposed element in simulating the hysteretic 

behaviour of steel structural members the results are compared with existing experimental 

data. In 
[10] 

a beam column connection is tested under continiously applied cyclic 

displacement. The geometry of the specimen can be seen in Fig. 1. Three beam elements 

were used for the analysis and the results are shown in Fig. 1 reagarding the total moment 

– plastic rotation relation of the column face where black line is for the experiment and 

blue line for the analysis. 

 

 
 

Fig. 1- Specimen LS- 1 (left) 
[10]

 and its analytical and experimental response (right). 

 

In the next example a typical portal frame with span 24 ft and height 14 ft, and W27x114 

columns and W24x94 beam under self-weight is subjected to the El Centro accelerogram, 



 

scaled up by a factor of 4. The yield limit is 36 ksi and the Bouc Wen parameters used are 

β=γ=0.5 and n=25. The results obtained for the displacements of the top of the frame are in 

good agreement against those obtained using OpenSees code 
[11] 

that employs multi 

segmental degrading models, which in general require significantly more computing time. 

 
Fig. 2 – Portal frame geometry and materials. 
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Fig. 3 - Displacement of the portal frame subjected to El Centro accelerogram. 

 

 

5. CONCLUDING REMARKS 

 

A wide range of hysteretic behavior can be modeled by the proper control of the Bouc-

Wen model parameters and the degradation parameters. The beam element is formulated 

with four new degrees of freedom accounting for the hysteretic part of the curvature and 

the axial centerline deformation. The entire problem is casted into two sets of equations 

namely the linear equations of motion and the nonlinear evolution equations, which are 

solved simultaneously by implementing a numerical differentiation scheme. Comparisons 

with experimental data and other structural analysis code show good results demonstrating 



 

the effectiveness of the proposed model to simulate degradation effects in hysteretic 

behavior. 
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ΠΕΡΙΛΗΨΗ 

 

Σε αυτό το άρθρο παρουσιάζεται ένα πεπερασμένο στοιχείο δοκού κατάλληλο για την 

ανελαστική δυναμική ανάλυση κατασκευών. Το υστερητικό στοιχείο δοκού που 

παρουσιάστηκε από τους Τριανταφύλλου και Κουμούσης επεκτείνεται ώστε να περιλάβει 

τα φαινόμενα της μείωσης της αντοχής, της δυσκαμψίας καθώς και το φαινόμενο της 

στένωσης. Η συμπεριφορά του στοιχείου καθορίζεται από το υστερητικό μοντέλο του 

Bouc–Wen, ενώ η απομείωση της δυσκαμψίας και της αντοχής βασίζονται στο μοντέλο 

των Baber και Wen και η στένωση στο μοντέλο του Foliente. Το προτεινόμενο στοιχείο 

διαμορφώνεται με επιπρόσθετους βαθμούς ελευθερίας, την υστερητική καμπυλότητα και 

τις υστερητικές αξονικές παραμορφώσεις. Τα μητρώα μορφώνονται με τη μέθοδο της 

άμεσης ακαμψίας, και το σύστημα των εξισώσεων μετατρέπεται σε μορφή χώρου 

κατάστασης για να επιλυθεί. Το σύστημα των εξισώσεων αποτελείται από τις εξισώσεις 

κίνησης καθώς και τις υστερητικές διαφορικές εξισώσεις Bouc–Wen με τις απομειώσεις. 

Η συμπεριφορά του στοιχείου (που σχετίζεται με το υλικό, το δομικό στοιχείο, τις 

συνδέσεις κ.ά.) ελέγχεται εύκολα από τη ρύθμιση των παραμέτρων του μοντέλου. Τέλος 

παρουσιάζονται παραδείγματα και συγκρίσεις του μοντέλου με πειραματικά δεδομένα που 

επιβεβαιώνουν τις δυνατότητές του. 


