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1. ABSTRACT

In this paper the hysteretic beam element proposed by Triantafyllou and Koumousis ™ is
extended to account for stiffness degradation, strength deterioration and pinching
phenomena. The behavior of the element is governed by the Bouc-Wen model of hysteresis
while stiffness and strength degradation are based on Baber and Wen model @ and
pinching on Foliente’s model !, The formulation is based on additional hysteretic degrees
of freedom which are considered as hysteretic curvatures and hysteretic axial deformations
of the cross-sections. The entire set of governing equations of the structure is solved
simultaneously by converting the system into state space form. This consists of the linear
global equations of motion and the nonlinear local constitutive evolutionary equations for
every element. Furthermore, degradation phenomena (related to material, structural
member and connection behavior) are treated in a unified manner and are easily controlled
through the model parameters at the element level. Numerical results are presented which
are compared with existing experimental data demonstrating the efficacy of the proposed
element in the analysis of steel structures.

2. INTRODUCTION

Hysteresis is a phenomenon where a system’s response depends not only on its current
state but also on the history of previous states. It is a nonlinear phenomenon usually
considered as rate-independent. Several hysteretic models have been developed in the past



to address hysteresis which can be divided into two categories, the multi-segmental models
and smooth models.

Multi-segmental models, such as bilinear, trilinear and other multi-linear models preceded
the smooth ones and define the behavior in piecewise linear stages such as the initial
elastic, yielding, hardening/softening stages with unloading and reloading branches.
Examples of such models are those proposed by Clough (1966), Takeda (Takeda et al.
1970) ¥ and Park (Park et al. 1987) ! among others.

On the other hand, smooth hysteretic models are based on continuous-smooth change of
stiffness after yield and can accommodate degradation phenomena. They are able to model
different types of hysteretic behavior and are based on a smooth hysteretic function and a
set of user defined parameters. Bouc-Wen model belongs to this category and has been
used widely in different applications. Extensions of this model are the Baber — Noori
(1985) 1 Baber — Wen (1981) 1, Foliente (1995) ¥ and Sivaselvan-Reinhorn model
(2000) ! and more recently the one by Kottari et al. (2014) 12,

Under cyclic loading the phenomena of stiffness degradation, strength deterioration and
pinching are usually manifested. These are caused by plastic regions being created and
extended in later loading cycles together with local buckling regions, which lead to
stiffness and strength loss. Pinching is the sudden loss of stiffness resulting in loops that
are thinner in middle range than at the ends. It is caused by the loosening and slipping of
joints in steel structures. In this paper the models proposed by Baber and Wen (1981) [ are
employed for stiffness and strength degradation together with the one by Foliente (1995) &
for pinching.

3. THE HYSTERETIC BEAM ELEMENT WITH DEGRADATIONS

For the 2D hysteretic beam element the inelastic moment-curvature relation and axial
force-axial centerline strain relation at a cross section at a distance s from the start node are
expressed as follows:
M (s,t)=aElg(s,t)+(@1—a)Elz(s,t)

N(s,t) =a,EAu(s,t)+(1-a,)EAz, (s,t) @
The hysteretic parameter z is defined as the hysteretic part of the curvature regarding the
bending degrees of freedom and z, is the hysteretic part of the axial centerline deformation.
The Bouc-Wen hysteretic differential equations with degradations are expressed as:
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where vs is the parameter that controls the strength deterioration and ng is the parameter
controlling stiffness degradation and h is the parameter controlling pinching. These
parameters are functions of the hysteretic energy dissipation (the energy dissipated by the
hysteretic spring) and are defined by the following relations ™
n, =1+ce", ¢, >0
v, =1+ce", ¢, >0
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Additionally h is defined as:
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Assuming Euler-Bernoulli beam theory curvature is approximated by:
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where w is the transverse deflection of the beam. Substituting relation (7) into (1):
2
M(st)=Elgst)  p(st)=al V(;ls(f’t)+(l—a)z(s,t) ®)
where ¢(s,t) can be regarded as a measure of an “equivalent generalized curvature”.
Similarly considering the axial degrees of freedom:
N(s,t) = EAZ(s,1) éo(s,t)zau%qt(l—au)zu(s,t) ©)

where N is the axial force and &,(s,t) is the generalized axial centerline strain.

3.1 DISCRETIZATION WITH FINITE ELEMENT METHOD

The displacement field is interpolated using cubic polynomial shape functions "
ul] [N, 0O O N, 0 0
wllo N, N, o N w9 (10)
3 4 5 6
where the nodal displacement vector {d} is defined as {d}={u, w, 6, u, w, 6,} .
The total curvature ¢ can be expressed as:
QDZI:O N3,ss N4,ss 0 NS,ss Ne,ss {d}:[Bb(s)]{d} (11)
where the subscript ,ss denotes double differentiation with respect to the space variable s,
and results in:
6 12s 4 6s 6 12s 2 6s
40(5){0 —teE e T —[+F}{d}=[5b(5)]{d} (12)
The hysteretic curvature is defined via the following linear shape functions ! and can be
written as:

Zw:[N7 Ns]{i}:[l\']z{ig} N7:l_% Ns:% (13)
the generalized curvature can therefore be expressed as:
p=al0 Ny, N, 0 Ny N, J{d}+@-a)N, Ng]{i} (14)
Similarly the generalized centerline axial deformation is expressed as:
g=a[N, 0 0 N, 0 0]{d}+a-a)N, Nm]{i} (15)
where the corresponding shape functions arel™"
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3.3 CONSTITUTIVE MATRIX RELATION

By means of the principle of virtual work the following relation is obtained ™:
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Relation (17) expresses the equilibrium including both the elastic and hysteretic behavior
of the element, where the axial forces are uncoupled with bending moments and shearing
forces not only in the elastic but also in hysteretic part. This relation can be written as:

{fy=alk]{d} +(1-a)[h]{z} (18)

where the first term represents the elastic behavior based on the reduced, plastic stiffness
and the second term adds the hysteretic part. These basic matrices are defined at elemental
level, are formed once in the beginning of the analysis and remain unchanged thereafter.
Transforming to the global system using the 2D transformation matrix [A] we get:

{Fy=a[AT [K][AJ{u}+(@-a)[A] [n]{z} (19)
3.4 EVOLUTION EQUATIONS

The nonlinear behavior of the element is governed by the Bouc-Wen evolution equations
(2) including stiffness, strength degradation and pinching. Equations (2) using (12)
transformed to the global system (19) can be expressed as:

2,(st)= h{l—vS @ (ﬂ+ ;/sgn(z(s,t)[Bb (s)][A]{u}))J[Bb (s)][A] {;} (20)
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3.5 STATE SPACE FORMULATION

For the dynamic problem the equation of motion for a multi degree of freedom structure
can be established as follows:

[M]{U}+[C] U} +[K] (U} +[H] {Z} = {PO)} (22)
where [M]s is the mass matrix, [C]s is the viscous damping matrix, [K]s is the stiffness
matrix, containing only the elastic part of relation (17), [H]s is the hysteretic matrix of the
structure and {P(t)} is the vector of external forces. These matrices are assembled
following the direct stiffness method 4 while the viscous damping matrix in general may
be of the form of a Rayleigh damping matrix °!. The hysteretic behavior is defined at the
element level in terms of hysteretic curvatures and centerline axial deformations from

relations (20) and (21). The hysteretic matrix of each element, expressed in the global
system, is appended to form the corresponding hysteretic matrix of the structure. Equations



(22), together with evolution equations (20) and (21), fully describe the response of the
system to a given external force and initial conditions. To solve the system of equations,
this can be transformed into a set of first order differential equations in state space form.
Introducing the vector of nodal velocities {u } as auxiliary unknown vector one can write
the system the following form:

{x}=G({x})+{PO} (23)
where the vector {x} is defined as:

=) U} 2] (24)
and G:
0 | 0
G({x})=|MI"[K] [M]*[C]  [M]7[H] (25)
o Y({uliz}) o

The operator G is a state dependent operator since Y contains the evolution equations of
every element:

n%wy44j=h@-w

The above system, for specific dynamic loading is integrated using a variable-order solver
based on the numerical differentiation formulas (NDFs) i.e. a multistep solver.
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4. NUMERICAL RESULTS

To demonstrate the efficiency of the proposed element in simulating the hysteretic
behaviour of steel structural members the results are compared with existing experimental
data. In 2 a beam column connection is tested under continiously applied cyclic
displacement. The geometry of the specimen can be seen in Fig. 1. Three beam elements
were used for the analysis and the results are shown in Fig. 1 reagarding the total moment
— plastic rotation relation of the column face where black line is for the experiment and
blue line for the analysis.
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Fig. 1- Specimen LS- 1 (left) 1% and its analytical and experimental response (right).

In the next example a typical portal frame with span 24 ft and height 14 ft, and W27x114
columns and W24x94 beam under self-weight is subjected to the EIl Centro accelerogram,



scaled up by a factor of 4. The yield limit is 36 ksi and the Bouc Wen parameters used are
B=y=0.5 and n=25. The results obtained for the displacements of the top of the frame are in
good agreement against those obtained using OpenSees code ™ that employs multi
segmental degrading models, which in general require significantly more computing time.

24 ft

1 W24x94
14 ft B 05
¥ 05
1 25 W27x114
W27x114 zby | 9.097e-05 1/n
£ 36 ksi
-y 1

Fig. 2 — Portal frame geometry and materials.
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Fig. 3 - Displacement of the portal frame subjected to ElI Centro accelerogram.

5. CONCLUDING REMARKS

A wide range of hysteretic behavior can be modeled by the proper control of the Bouc-
Wen model parameters and the degradation parameters. The beam element is formulated
with four new degrees of freedom accounting for the hysteretic part of the curvature and
the axial centerline deformation. The entire problem is casted into two sets of equations
namely the linear equations of motion and the nonlinear evolution equations, which are
solved simultaneously by implementing a numerical differentiation scheme. Comparisons
with experimental data and other structural analysis code show good results demonstrating



the effectiveness of the proposed model to simulate degradation effects in hysteretic
behavior.
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IHEPIAHYH

Ye owtd 10 apBpo mapovoidleTar Eva MEMEPAGUEVO GTOLYEID OOKOV KOTAAANAO Yo TNV
AVEAOOTIKT] OLVOMIKT] OVAALGOY KOTAoKELAV. To votepntikd ototyeio 00koD oL
Tapovsliotnke and toug Tpravtaediiov kot Kovpovong enekteivetoanr dote va mepthdfet
TOL QOIVOUEVO, TNG UEI®ONG TNG OVIOYNG, TG dvoKapyiag kabdG Kol TO QUIVOUEVO TNG
otévoonc. H ocvunepipopd tov otoryeiov kabopiletor amd 10 vOTEPNTIKO HOVIEAO TOV
Bouc-Wen, evd n amopeimon g dvokopyiog Kot e avioyns Pacifovior 610 povtélo
tov Baber ka1 Wen kot n otévoon oto povtédo tov Foliente. To mpotevopevo ctotyeio
dwpopemverol pe emmpocheTovg Pabuovg erevbepiag, TNV LOTEPNTIKN KOAUTLAOTNTA KO
TIG VOTEPNTIKEG AEOVIKEG TOPALOpPOoElS. Tao untpdo popedvovtor pe ™ HéBodo g
dueong oakapyiog, Kot To cLOTNUO TOV EEICOCEMV HETATPEMETAL GE HOPPN YDPOL
katdotoong yuo vo emAvdel. To chotua tov eEilodcewv anoteheiton amd T1g e£16D0ELG
Kivnong kabmg Kat T voTEPNTIKEG dtpopikeg e€lomaoelc Bouc—Wen e 11 amopeidoels.
H ovunepipopd tov ctoyeiov (mov oyetiletor pe to vVAKO, TO SOHKO GTOLYElD, TIC
OLVOECELG K.G.) EAEYYETOL EVKOAM amd TN pOOUIOT TOV TOPAUETP®Y TOL HOVTEAOL. TEAOG
TaPOLGIALOVTOL TAPUSEIYLATO KOl GUYKPIGELG TOV LOVTEAOD LE TEPULOTIKG OEGOUEVO TTOV
emPBePardvouv TIc SOLVATOTNTEG TOV.



