A Levinson-type beam approach for double-T cross section beams in bending
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1. ABSTRACT

The present paper deals with the derivation of a Levinson - type solution for the bending of
double-T cross section beam. It is generally accepted that the Euler-Bernoulli bending
theory (EBT) looses accuracy for L/h ratios less than 10. The discrepancies become all the
more significant in the case of alternating-curvature bending (herein referred to as anti-
symmetric bending).

The existing bending theories that account for shear are the well known Timoshenko beam
theory (TBT) and the more-recent Levinson beam theory (LBT), known also as the Reddy-
Bickford theory, are all formulated for orthogonal cross sections. Numerical simulation
shows significant differences in the behavior of double-T beams from the predictions of
shear-aware existing bending theories derived with orthogonal cross sections in mind. The
present paper attempts to address this problem by way of deriving and validating a bending
theory that is particular for double-T beams.

2. INTRODUCTION

The problem of shear deformation of beams has been addressed by several researchers in
the past. The best known attempt are those by Timoshenko [1] and Levinson [2], [3].
However both approaches were formulated around the concept of a beam with a thin
orthogonal cross section. The case of H and | beams was not specifically addressed. These
beams being of particular significance for the area of Steel Structures behave, as will be
shown, somewhat differently. In the present paper an analytical approach that essentially is
a modification of the Levinson beam theory (LBT) is presented and compared to Finite
Element (FE) results.
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3. FORMULATION

Levinson's original formulation [2] is classified by Reddy et al. [4] as a third order theory,
due to the nature of the assumed displacement field

u(w,z) = zip(x) + 2¢(x) (1)

Here the x-axis is taken along the length of the beam and vy, z are the major and the minor
axis of bending of the beam (Eurocode convention). The respective displacements are
denoted by u, v and w and, in what follows, the origin of the reference system is taken at
the middle of the beam which is assumed to be doubly symmetric. Levinson's key point is
the remark that the xz component of the shear strain €z:has to vanish on the extreme fibers
of the cross section as those are stress free. This gives rise to a relation between the two
unknown functions ¢and vof eq.(1) as following

p(x) = —(4/3h*)(¢v + Ow/0x) (2

which is of crucial for the rest of the derivation. However, eq.(2) does not hold for the
extreme fibers of the web of a double-T (2-T) beam as, the shear stress of the web has to
balance-out the variation of the axial force of the flanges

8Nf/835‘ = Gtuv£a¢z|z=:l:h/2 (3)

The flange axial force for the assumed displacement field of eg.(1) can be written as

Ny
Ebt

= €mm’ih/2 = (h3¢’($)/8 + hy'(x)/2) 4)

Now, using eq.(1) in combination with the strain-displacement equations, eg.(3) yields
Ebtf(hSQf)H(:C)/S + h)"(x)/2) — Gty (%h?’q’)(a:) +(z) +w'(z)) =0 (5)

which relates ®and ¥for in case of a 2-T beam in a way analogous to that of eq.(2) in the
case of the rectangular cross section. The next step is to write down the equations of
equilibrium of the beam making use of the expressions for the bending moment and the
shear force that result from the assumed displacement field of eq.(2). First we write the
expression for the strong axis bending moment in the form

h/2

M, = Etw/ 2€z,dz + Ny h (6)
—h/2

where the contribution of the flanges appears as a separate term. Admittedly this

expression captures only the membrane function of the flanges but numerical investigation

showed the error to be less that 1%. Using egs. (1), (4) we get

M, = E(bh';/8 + h’t,/80) ¢'(z) + E(bh*t;/2 + h’t,/12) ¢'(z)  (7)

The shear force, obtained as the integral of 7z-resulting from eq.(1), over the web, reads



h/2
Q. = Gty / €22z = Gty (3h36(z) + hap(z) + hw'(z)). (8)
—h/2

Now Myand Qfrom egs. (7),(8) will be substituted into the equilibrium of the beam
0Q./0x + p = 0 and Q. = — IM,/0x 9)
giving rise, for the case of two equal moments Moat the ends, to
2Mo/L — mp"(z) — mag”(z) = 0 (10)
and
Gtw(zl; hgqb'(;z:) + h’tj)’(:n) + hw”(:ﬁ)) =0 (11)
where
my = E(bh*t;)2 + h3t,/12) , my = E(bh't;/8 + h°t,/80).  (12)
The loading condition of antisymmetric bending is of particular interest here as, the Euler
Bernoulli beam theory works with remarkable accuracy in the case of cylindrical bending.
We now have a system of three equations, namely (5), (10) and (11) with three unknowns,
that is the deflections w()and the functions ®(%)and ¥(%)which fully define the stress
situation in the beam.

4. ANALYTICAL SOLUTION

Due to the symmetry considerations, one can write down the following relations

w(z) = —w(==), ¥(z) =¢(-x), ¢(z) = ¢(—=) (13)
The general solutions of the system are then calculated to be
_ 1 4FEbhma Mot ¢ _ 2 9
Yo(w) = 52| — e +my|h ( — 2Moyx® 4+ 3LmaC + 2Lmng) —
4 ALy (Co + Cy) — Lims (3h201 A(Co + 04)) Cosh(cmv)u , (14)
1 .
2) = ———[4bERMyt; — GLmyty, (h,ZC 4(C; + C, )
¢o(x) 2Gh2Lmltw[ 1Mot ¢ my 1+4(C2+ Cy) )+
+ GLmqt, (3]3201 +4(Cs + C4)) cosh(aux) (15)
wo(z) = 1t Nhax | — 126 Eh Myt (h®my — 4mso)+ G myty, | 9R*Lm, C1—
A8IS2Lm?t, ! v

— 48Lmy(Cy + Cy) + 4h? [2]\!03;2 —9LmsCy +3LmCy + 9L’I?L104] )] +



+ 3L(f12ml - 4m2)3/2\/Gmletftw(3h26’1 +4(Cy + C4)) sinh(ax) (16)

where m1, mawere given in eg.(12) and

2V Ghmaty
o =
\/bE(h2m1 — 4m-2)tf

(17)

The three constants of integration €1, C2and C'sremain to be determined. To this end, the
following boundary conditions are considered: first the deflection is zero at the middle of
the beam due to symmetry

wy(L/2) = 0 (18)
The shear is constant everywhere and equal to 2Mo/L; using eq.(8) we write
Gty (3h’po(x) + habo(x) + hwp(x)) = 2My/L (19)

Finally, assuming the the end-moments Mgto be the result of pairs of concentrated forces
applied at the flanges, one may consider the equilibrium along xof the upper part of the
beam (imagine a full length longitudinal section along the xaxis at some height zbetween
—h/2and h/2) and write the condition

L)2
Gty f €oz dz = 2My/h (20)
—L/2

The assumption that the end moments are the result of concentrated forces acting
exclusively at the flanges is not inaccurate considering the majority of practical steel
structures connections. Introducing the conditions (18)-(20) into (14)-(16) one obtains the
values of the constants of integration

2Mpcsch(aL/2) .
Cy=— [\/Gh,tm — 2my + Ebht;) +
! Gh3 Lty /Emibt ¢ (h*my — 4my) ( ! )
+ 2 \/Emlbtf(h27rzl — 4m2)sinh(aL/2)] (21)
Cy = My

12Gm; 2 Lh3t,,\/Ebt ; (h2m, —4ms)

\/E’ITL1btf(h2m1 — 4m2) (24h2m1 4+ 48moy — GhSLQtw)—F

+24 L mm/Ghtw( — 2mq + Ethtf) cosh(oaL/Q)] (22)

B My csch(aL/2)
12 G m%? L b3 t,,\/Ebt;(h2my — dms)

Cy

(12h*my — 48ma + Gh*L?t,,) \/ Ebt pmy (h2my — dmy) sinh(aL/2)+




+ 6L\/Ghty (h*mq — 4ms) (— 2my + Ebh*ty) (23)

The evaluation of the constants of integration completes the procedure of the analytical
solution. The hence obtained solution will be referred to as the modified Levinson beam
theory (mLBT).

In Fig.1, the beam rotation taken as (u(h/2) — uw(—h/2))/hof a simply supported HE500A
beam subjected to two unit end-moments is plotted over it's length. Two L/h ratios, namely
4.5 and 20 are shown. The rotations are computed by means of classical EBT (blue), LBT
(green) and the mLBT (red). All approaches converge for L/h=20 but, for L/h=4.5, some
non-negligible discrepancies are evident. Note that EBT and LBT differ very little.
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Fig.1 HE500A slopes by EBT (blue), LBT (green) and modified LBT (red)
5. NUMERICAL VERIFICATION

In what follows a brief account of the accuracy of the results of the mLBT will be given.
The loading case considered is, as mentioned before, antisymmetric bending: simply-
supported HE300A beam is subjected to two unit moments at it's ends. The beam length L
is equal to 5h. The horizontal axis of the graphs in Fig. 2 correspond to the z coordinate
along the web height and the plotted quantity is the x-displacement sampled at four
different positions indicated by & which is the normalized x-coordinate (—0.5 < § < 0.5),

The green dotted line shows the cross section x-displacement according to the Euler
Bernoulli beam theory (EBT). The blue dotted line comes from the FE result. An 8-node
quadrilateral reduce integration shell elements model with 14000 DOF was used. Finally
the red line shows the result of the present mLBT. The differences between EBT and the
FE/mLBT results is quite evident near the beam ends (&=0.5, £=0.479). However, it must
be said that the discrepancies do not die-out as quickly for other cases. On the other hand,
the mLBT always produces displacements close to the FE result. A total of 250 similar
cases that were examined showed similar behavior. These included IPE, HEA and HEB
beams from 100 to 550 with L/h ratios in the range of 5 to 25. A preliminary result not
discussed in detail here due to space restrictions, is the increasing discrepancies between
LBT and the present approach in proportion to the contribution of the flanges to the total
moment of inertia of the cross section.
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Fig. 2: x-displacements of a HE300A, L/h=5, by EBT (green), FE (blue) and mLBT (red)

6. CONCLUSIONS

A mathematical approach to the problem of anti-symmetric bending of double-T cross
section beams was developed. A closed form solution was obtained and compared to the
results of Finite Element models. Good convergence was shown between the theoretical
and the numerical results. An other result is that beam theories formulated with the effects
of shear in mind but, for orthogonal cross sections fail to accurately capture the problem of
shear in the case of double-T beams, so widely used in the Steel Industry.
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H mapovoa epyasio mpaypoteveton 10 TpOPANU TS KAUWYNG VO KAOEGTOS SIUTUNONG O
dokov¢ otatopung ourhov Taw. To mpoPAnua dev eivar PLGIKE KavovpPylo Kol ot EvpliTEPA
YVOOTEC Tpooeyyioelg eivor 1 dokdg Timoshenko kot i dokdg Levinson n omoia eivor ko
yvoot) og dokdc Reddy-Bickford. Ov Bewpieg avtég £xovv avomruydei yioo opBoywvikég
owtopés. AplBuntikny  Oepedhivnon  €0eiée  amokAicelc Ttov mpoPAéyemv  amd To
OTOTEAEGULOTO. TPOCOUOIDCEWV e TEMEPACUEVA oToryein 10iwg ™G mAEOV TPOGPATNG
pocéyyiong tov Levinson (1981) mov pmopei va Bewpndei kot og aptidtepn €k TV dVO.
[Mepartépw, pion TPOGEKTIKOTEPT avdyvmon g Hopemong tov Levinson, deiyver 611 t0
yeyovog TG avAANYNS TOL KLUPIOL UEPOVS TNG KOUTTIKNG POTNG OO TO TEALNTO TMV
dwrtopudv Owmhov-T kabiotd pio amd TG KOpleg TOPadOYEG TNG TPOCEYYIONS OVTNG
avakpipn.

¥to0 «kelpevo g mapovoog epyaciag TopPovClACETOL 1) TPOTOTMOUUEVY] HOPON NG
datvnwong g Hopemone tov Levinson yia tic dwatopéc dumAov-T ko didetar Avon
KAEIGTOD TOUMOL Yl TIS TPOKVITOVCES OWPOPIKES €EloMOELS Yoo TO TPOPANUA NG
OVTIGLUUETPIKNG KAUWYNS OLOEPIGTOV O0KOV (000 i0EG pOTEC GTaL AKPaL).

H Mom ovykpiveror pe aptBuntikd amotelAéouato TeEnepapéveoy oTotyeimv 6mov 1n d0kog
TPOGOUOIDVETOL UE €mimeda oTolyeio keAbeovg kol Pploketor oe vynAod eminedo
GLUE®VIOG LE AVTAL.
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