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1. ABSTRACT 

 

The present paper deals with the derivation of a Levinson - type solution for the bending of 

double-T cross section beam. It is generally accepted that the Euler-Bernoulli bending 

theory (EBT) looses accuracy for L/h ratios less than 10. The discrepancies become all the 

more significant in the case of alternating-curvature bending (herein referred to as anti-

symmetric bending). 

The existing bending theories that account for shear are the well known Timoshenko beam 

theory (TBT) and the more-recent Levinson beam theory (LBT), known also as the Reddy-

Bickford theory, are all formulated for orthogonal cross sections. Numerical simulation 

shows significant differences in the behavior of double-T beams from the predictions of 

shear-aware existing bending theories derived with orthogonal cross sections in mind. The 

present paper attempts to address this problem by way of deriving and validating a bending 

theory that is particular for double-T beams. 

 

 

2. INTRODUCTION 

 

The problem of shear deformation of beams has been addressed by several researchers in 

the past. The best known attempt are those by Timoshenko [1] and Levinson [2], [3]. 

However both approaches were formulated around the concept of a beam with a thin 

orthogonal cross section. The case of H and I beams was not specifically addressed. These 

beams being of particular significance for the area of Steel Structures behave, as will be 

shown, somewhat differently. In the present paper an analytical approach that essentially is 

a modification of the Levinson beam theory (LBT) is presented and compared to Finite 

Element (FE) results. 
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3. FORMULATION 

 

Levinson's original formulation [2] is classified by Reddy et al. [4] as a third order theory, 

due to the nature of the assumed displacement field 

 

  (1) 

 

Here the x-axis is taken along the length of the beam and y, z are the major and the minor 

axis of bending of the beam (Eurocode convention). The respective displacements are 

denoted by u, v and w and, in what follows, the origin of the reference system is taken at 

the middle of the beam which is assumed to be doubly symmetric. Levinson's key point is 

the remark that the xz component of the shear strain has to vanish on the extreme fibers 

of the cross section as those are stress free. This gives rise to a relation between the two 

unknown functions and of eq.(1) as following 

 

  (2) 

 

which is of crucial for the rest of the derivation. However, eq.(2) does not hold for the 

extreme fibers of the web of a double-T (2-T) beam as, the shear stress of the web has to 

balance-out the variation of the axial force of the flanges 

 

  (3) 

 

The flange axial force for the assumed displacement field of eq.(1) can be written as 

 

  (4) 

 

Now, using eq.(1) in combination with the strain-displacement equations, eq.(3) yields 

 

  (5) 

 

which relates and for in case of a 2-T beam in a way analogous to that of eq.(2) in the 

case of the rectangular cross section. The next step is to write down the equations of 

equilibrium of the beam making use of the expressions for the bending moment and the 

shear force that result from the assumed displacement field of eq.(2). First we write the 

expression for the strong axis bending moment in the form 

 

  (6) 

where the contribution of the flanges appears as a separate term. Admittedly this 

expression captures only the membrane function of the flanges but numerical investigation 

showed the error to be less that 1%. Using eqs. (1), (4) we get 

 

  (7) 

 

The shear force, obtained as the integral of resulting from eq.(1), over the web, reads 

 



  (8) 

 

Now and from eqs. (7),(8) will be substituted into the equilibrium of the beam 

 

  (9) 

 

giving rise, for the case of two equal moments at the ends, to 

 

  (10) 

 

and 

 

  (11) 

 

where 

 

  (12) 

 

The loading condition of antisymmetric bending is of particular interest here as, the Euler 

Bernoulli beam theory works with remarkable accuracy in the case of cylindrical bending. 

We now have a system of three equations, namely (5), (10) and (11) with three unknowns, 

that is the deflections and the functions and which fully define the stress 

situation in the beam. 

 

 

4. ANALYTICAL SOLUTION 

 

Due to the symmetry considerations, one can write down the following relations 

 

  (13) 

 

The general solutions of the system are then calculated to be 

 

 

  (14) 
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  (16) 

 

where , were given in eq.(12) and 

 

  (17) 

 

The three constants of integration , and remain to be determined. To this end, the 

following boundary conditions are considered: first the deflection is zero at the middle of 

the beam due to symmetry 

 

  (18) 

 

The shear is constant everywhere and equal to ; using eq.(8) we write 

 

  (19) 

 

Finally, assuming the the end-moments to be the result of pairs of concentrated forces 

applied at the flanges, one may consider the equilibrium along of the upper part of the 

beam (imagine a full length longitudinal section along the axis at some height between 

and ) and write the condition 

 

  (20) 

 

The assumption that the end moments are the result of concentrated forces acting 

exclusively at the flanges is not inaccurate considering the majority of practical steel 

structures connections. Introducing the conditions (18)-(20) into (14)-(16) one obtains the 

values of the constants of integration 

 

  

  (21) 

 

  

  

  (22) 

 

  

  



  (23) 

 

The evaluation of the constants of integration completes the procedure of the analytical 

solution. The hence obtained solution will be referred to as the modified Levinson beam 

theory (mLBT). 

 

In Fig.1, the beam rotation taken as of a simply supported HE500A 

beam subjected to two unit end-moments is plotted over it's length. Two L/h ratios, namely 

4.5 and 20 are shown. The rotations are computed by means of classical EBT (blue), LBT 

(green) and the mLBT (red). All approaches converge for L/h=20 but, for L/h=4.5, some 

non-negligible discrepancies are evident. Note that EBT and LBT differ very little. 

 

  

Fig.1 HE500A slopes by EBT (blue), LBT (green) and modified LBT (red) 

 

5. NUMERICAL VERIFICATION 

 

In what follows a brief account of the accuracy of the results of the mLBT will be given. 

The loading case considered is, as mentioned before, antisymmetric bending: simply-

supported HE300A beam is subjected to two unit moments at it's ends. The beam length L 

is equal to 5h. The horizontal axis of the graphs in Fig. 2 correspond to the z coordinate 

along the web height and the plotted quantity is the x-displacement sampled at four 

different positions indicated by ξ which is the normalized x-coordinate ( ). 

 

The green dotted line shows the cross section x-displacement according to the Euler 

Bernoulli beam theory (EBT). The blue dotted line comes from the FE result. An 8-node 

quadrilateral reduce integration shell elements model with 14000 DOF was used. Finally 

the red line shows the result of the present mLBT. The differences between EBT and the 

FE/mLBT results is quite evident near the beam ends (ξ=0.5, ξ=0.479). However, it must 

be said that the discrepancies do not die-out as quickly for other cases. On the other hand, 

the mLBT always produces displacements close to the FE result. A total of 250 similar 

cases that were examined showed similar behavior. These included IPE, HEA and HEB 

beams from 100 to 550 with L/h  ratios in the range of 5 to 25. A preliminary result not 

discussed in detail here due to space restrictions, is the increasing discrepancies between 

LBT and the present approach in proportion to the contribution of the flanges to the total 

moment of inertia of the cross section. 



  

  

Fig. 2: x-displacements of a HE300A, L/h=5, by EBT (green), FE (blue) and mLBT (red) 

 

 

6. CONCLUSIONS 

 

A mathematical approach to the problem of anti-symmetric bending of double-T cross 

section beams was developed. A closed form solution was obtained and compared to the 

results of Finite Element models. Good convergence was shown between the theoretical 

and the numerical results. An other result is that beam theories formulated with the effects 

of shear in mind but, for orthogonal cross sections fail to accurately capture the problem of 

shear in the case of double-T beams, so widely used in the Steel Industry. 
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Η παρούσα εργασία πραγματεύεται το πρόβλημα της κάμψης υπό καθεστώς διάτμησης σε 

δοκούς διατομής διπλού Ταύ. Το πρόβλημα δεν είναι φυσικά καινούργιο και οι ευρύτερα 

γνωστές προσεγγίσεις είναι η δοκός Timoshenko και η δοκός Levinson η οποία είναι και 

γνωστή ως δοκός Reddy-Bickford. Οι θεωρίες αυτές έχουν αναπτυχθεί για ορθογωνικές 

διατομές. Αριθμητική διερεύνηση έδειξε αποκλίσεις των προβλέψεων από τα 

αποτελέσματα προσομοιώσεων με πεπερασμένα στοιχεία ιδίως της πλέον πρόσφατης 

προσέγγισης του Levinson (1981) που μπορεί να θεωρηθεί και ως αρτιότερη εκ των δύο. 

Περαιτέρω, μία προσεκτικότερη ανάγνωση της μόρφωσης του Levinson, δείχνει ότι το 

γεγονός της ανάληψης του κυρίου μέρους της καμπτικής ροπής από τα πέλματα των 

διατομών διπλού-Τ καθιστά μία από τις κύριες παραδοχές της προσέγγισης αυτής 

ανακριβή. 

Στο κείμενο της παρούσας εργασίας παρουσιάζεται η τροποποιημένη μορφή της 

διατύπωσης της μόρφωσης του Levinson για τις διατομές διπλού-Τ και δίδεται λύση 

κλειστού τύπου για τις προκύπτουσες διαφορικές εξισώσεις για το πρόβλημα της 

αντισυμμετρικής κάμψης αμφιερίστου δοκού (δύο ίσες ροπές στα άκρα). 

Η λύση συγκρίνεται με αριθμητικά αποτελέσματα πεπεραμένων στοιχείων όπου η δοκός 

προσομοιώνεται με επίπεδα στοιχεία κελύφους και βρίσκεται σε υψηλό επίπεδο 

συμφωνίας με αυτά. 
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