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1. ABSTRACT  
 

Limit analysis of framed structures based on static theorem is treated as a Linear 

Programming (LP) problem that maximizes the load factor under equilibrium and yield 

constraints. Yield condition is expressed herein in two different ways, i.e. i) as the 

intersection of half spaces and ii) as the convex hull/envelop of a fixed number of vertices. 

The two formulations differ in terms of number of variables and yield constraints and their 

computational efficiency is investigated for axial force-bending moment and axial-shear 

force- bending moment interaction. Numerical results of a 2D steel frame are presented 

that prove the computational advantages of convex hull formulation for both cases of 

interaction, demonstrating also the effect of combined stresses on the load carrying 

capacity. 

 

 

2. INTRODUCTION  
 

Limit analysis aims at determining directly the collapse load and collapse mechanism and 

is used for elastoplastic analysis and efficient design of structures. The Linear 

Programming (LP) formulation of the problem treats the ultimate load evaluation as an 

optimization problem and the two theorems of limit analysis, i.e. the static (lower bound) 

theorem and the kinematic (upper bound) theorem reflect the interrelation of primal-dual 

LP. Limit analysis with LP was initiated by Charnes and GreenBerg [1] for the ultimate 

state analysis of trusses. A variety of alternative mathematical programming procedures for 

limit analysis of discrete structures described by piecewise linear elastic-perfectly plastic 

constitutive laws were formulated and compared with respect to their computational merit 

by Maier et al. [2-6]. Most of this development is based on a piecewise linearization 

(PWL) of the convex yield condition that delimits the elastic domain as an intersection of 

half-spaces determined by a number of hyperplanes. The aim of this work is to express the 
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yield condition as the convex hull of a number of vertices and compare in terms of 

computational efficiency the two different formulations for the yield condition, i.e. 

equations of yield hyperplanes (standard formulation) and convex hull formulation. 

 

 

3. PROBLEM FORMULATION OF LIMIT ANALYSIS WITH LP 

 

Plane frames are considered that consist of straight prismatic elements subjected only to 

nodal loading for reasons of simplicity. Frame displacements are assumed small enough so 

that the equilibrium equations refer to the initial undeformed configuration. It is also 

assumed that the structure consists of nel elements and has nf  degrees of freedom, while d is 

the number of combined stresses (d-component interaction), h is the number of yield 

lines/hyperplanes and nv is the number of vertices of the linearized yield surface.  

 

Limit analysis based on the static theorem involves constraints concerning equilibrium and 

yielding. In this work, yield condition is established in two different ways: i) as a finite 

number of linear inequalities, which geometrically represents the intersection of a finite 

number of halfspaces and hyperplanes and ii) as convex hull of a fixed number of vertices.  

 

A convex hull of a set of points C, is the space contained within the polyhedron that 

contains all points. Mathematically the convex hull or convex envelope of set C is the 

smallest convex set that contains C [7], and is expressed as conv C, containing all convex 

combinations of points in C: 

  1 1 1| , 0, 1 , 1n n i i nC x x x C i n             conv  (1) 

where i  are nonnegative coefficients and 1, , nx x  are the points-vertices.. 

The aim of limit analysis is the determination of the ultimate load that a structure can 

sustain. The static approach involving equilibrium and yield conditions enforces the 

following LP formulation: 
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where the decision variables are the stresses s and the load factor a . The first set of 

equality constraints constitutes the structural equilibrium relationship, where B is the 

(nf×3nel) structural equilibrium matrix, s is a (3nel×1) vector for all primary stress 

resultants, a is a scalar load factor, f is a (nf×1) matrix of nodal loading and fd is the (nf×1) 

fixed nodal load vector.  The set of inequality constraints concerns the yield condition 

formulation, where N is the (3nel × 2hnel) matrix of all scaled -with respect to yield 

capacities of stresses- normal vectors and r  is the (2hnel ×1) vector that includes the yield 

limits of all yield lines. It is noted that, although the structure is statically indeterminate, 

compatibility relations are not considered, allowing the yield conditions to establish the 

collapse mechanism. For axial force-bending moment (NM) interaction h=8, while for 

axial-shear force-bending moment (NQM) interaction in sections h=32. 

 

The formulation of limit analysis problem using convex hull consideration is given as:  
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where the decision variables of the problem are the stresses s , parameters   and the load 

factor a .  The first set of equality constraints represents equilibrium, the second and third 

sets of constraints express yield condition using the concept of convex hull, where T is the 

(2dnel×3nel) matrix containing the yield capacities of the stresses, C is the (2dnel×2nvnel) 

matrix containing the coordinates of the vertices of all yield hyperplanes for all elements, θ 

is the (2nvnel×1) vector including the non-negative coefficients θi for all vectors of the 

vertices nv for all the elements, and Ieq is the (2nel×2nvnel) matrix that sums the 

corresponding i  at every element end. For axial force-bending moment (NM) interaction 

d=2 and h=nv=8, while for axial-shear force-bending moment (NQM) interaction in 

sections d=3, h=32 and nv=18. 

 

It is noted that convex hull formulation expresses yield conditions with strict equality 

constraints, the number of which is independent of the number of the linear 

segments/planes of the yield surface. The number of variables, though, is increased as 

compared to the standard formulation since parameters θi are introduced. At this point, it is 

worth noting that generally an additional constraint requires more computational effort 

than an additional variable [8]. However, this is only indicative for the computational 

efficiency of convex hull formulation since the number of the new variables usually differs 

from the number of constraint reduction. Since for 3D interaction the number of vertices nv 

is noticeably smaller than the number of planes h, convex hull formulation becomes 

considerably advantageous in terms of computational efficiency for expressing the yield 

condition. 
 
 
4. NUMERICAL EXAMPLE 

 

The optimization problems described in relations (2) and (3) are implemented in Matlab 

code for the analysis of frame steel structures with rigid-perfectly plastic behavior. The 

data are processed by linprog solver that is appropriate for linear programming problems. 

The aim is to compare the two formulations of yield condition and investigate the influence 

of axial force-bending moment interaction on the ultimate load. For this purpose, a steel 

plane frame is examined for the following cases: 

 Case (a): Pure bending. 

 Case (b): Axial force-bending moment interaction (NM interaction) with 1) standard 

formulation and 2) convex hull formulation. 

 Case (c): Axial-shear force-bending moment interaction (NQM interaction) with 1) 

standard formulation and 2) convex hull formulation. 

For case (a) the formulation of the problem is simplified since yield constraints consist of 

upper and lower bounds (side constraints) for the values of bending moments (no need of 

matrix N ).  All analyses are conducted on a PC with a Core Duo Quad CPU and 4GB of 

RAM and the results of all cases are presented below. Notice that the analysis method 

follows the sign convention of matrix structural analysis, whereas final results are 

presented on the basis of engineering sign convention. 



 

The example concerns the six-storey, four-bay plane frame, shown in Fig. 1, that is 

subjected to increasing lateral and fixed vertical loading. The frame is discretized into 72 

elements, 56 nodes and 153 degrees of freedom. The steel grade is S235 with E=2×10
8 

kN/m
2
. Sections with A=197.5×10

-4 
m

2
, I=86970×10

-8 
m

4
,
 
s1y=4641.3 kN, vy=1013.24 kN, 

s2y=928.02 kNm, s3y=928.02 kNm and sections with A=84.46×10
-4 

m
2
, I=23130×10

-8 
m

4
,
 

s1y=1984 kN, vy=579.22 kN, s2y=307.15 kNm, s3y=307.15 kNm are employed for all 

columns and beams respectively. Analysis results of all cases are presented in Table 1. 

 

 
 

Fig. 1: Six-storey, four-bay plane steel frame. 

 

Pure Bending NM 
NM Convex 

Hull
NQM

NQM Convex 

Hull

 (a) (b1) (b2) (c1) (c2)

43.26 40.92 40.92 36.29 36.29

49 51 51 52 52

0.414 0.935 0.911 15.586 1.233

220 220 1388 220 2848

153 153 591 153 737

— 1168 — 4672 —
number of inequality 

constraints n inq

Cases            

maximum load factor a 

(kN)

number of plastic hinges             

computational time (s)

number of variables n var

number of equality 

constraints n eq

 
 

Table 1: Analysis results of all cases. 

 

The axial-shear force-bending moment interaction corresponds to the smallest value of the 

maximum load factor and pure bending consideration to an unsafe greater value, as 

expected. Fewer plastic hinges are formed for case (a) that reach their yield limit in terms 



of bending moment. Analysis results of standard and convex hull formulation are identical 

for both NM and NQM interaction respectively. The computational efficiency of convex 

hull formulation is more pronounced for NQM interaction, since convergence is achieved 

12.64 times faster. The plastic hinge patterns (number and location) and the corresponding 

interaction diagrams for cases (b) and (c) are shown in Fig. 2 and Fig. 3 respectively. The 

effect of combined stresses is evident at the yielded column cross sections (Fig. 2a and 3a) 

that under pure bending consideration remain elastic. The frame is mainly stressed due to 

bending moment (the dispersion of stress points is greater along the bending moment axis) 

for all cases, while the effect of shear force for some beam and column cross sections is 

more intense than that of axial force, as shown in Fig. 4b.  

 

 
 

 
Fig. 2: a) Plastic hinge pattern and b) interaction diagram for NM interaction. 

 

 

 
 

 
Fig. 3: a) Plastic hinge pattern and b) interaction diagram for NQM interaction. 

 

 



 
 

Fig. 4: Plan views of NQM interaction diagram. 

 

 

5. CONCLUDING REMARKS 

 

Limit analysis is treated herein in the framework of mathematical programming. The 

ultimate state of a structure and its maximum load carrying capacity is determined by 

solving a linear programming problem that aims at maximizing the load factor a  subjected 

to constraints that enforce equilibrium and yielding (static theorem). In this work, two 

formulations of yield condition i.e. the yield polyhedron are examined, i) as the 

intersection of a finite number of halfspaces and hyperplanes (standard formulation) and ii) 

as a convex hull. The latter is equivalent to a set of equality constraints, the number of 

which is independent of the number of the yield hyperplanes. The price, though, is in the 

number of variables which is increased compared to the standard formulation, since 

nonnegative coefficients θ are introduced. The two formulations differ in terms of number 

of variables and constraints and are compared in terms of computational efficiency for 

axial force-bending moment (NM) and axial-shear force-bending moment interaction 

(NQM). Numerical examples are presented proving that convex hull formulation requires 

significantly less computing time compared to the standard one. More specifically, for 

NQM interaction the computational efficiency of convex hull formulation corresponds to a 

more than 13 times faster solution, compared to the standard one. This is due to the 

reduced number of constraints, since it is independent of the linearization of the yield 

surface, contrary to the standard formulation. Moreover, the increased number of variables 

for convex hull formulation is also associated with the number of vertices, which is 

noticeably smaller compared to the number of planes for the case of 3D interaction. Thus, 

convex hull formulation expresses advantageously multi-component interaction of the 

yield condition enabling fine approximations of the nonlinear yield surface. Furthermore, 

the effect of axial force-bending moment and axial-shear force-bending moment 

interaction on the ultimate load and state of a structure is demonstrated. The combined 

stresses generally correspond to reduced maximum load factors and to collapse 

mechanisms with more plastic hinges compared to pure bending consideration. Moreover, 

the effect of shear force on the ultimate load carrying capacity is remarkable, even for 

frames that are stressed mainly due to bending moment. 
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ΠΕΡΙΛΗΨΗ 

 

Στην παρούσα εργασία, η οριακή ανάλυση πλαισιακών φορέων, βασισμένη στο στατικό 

θεώρημα, αντιμετωπίζεται ως ένα πρόβλημα γραμμικού προγραμματισμού, το οποίο 

μεγιστοποιεί το φορτικό συντελεστή υπό περιορισμούς ισορροπίας και διαρροής. Η 

συνθήκη διαρροής εκφράζεται με δύο διαφορετικούς τρόπους: 1) ως τομή ημιχώρων, 2) ως 

κυρτό πολύεδρο (convex hull/envelop), που περιβάλλει συγκεκριμένες κορυφές. Οι δύο 

διατυπώσεις διαφέρουν ως προς τον αριθμό των μεταβλητών και των περιορισμών και 

διερευνάται η αποτελεσματικότητά τους για αλληλεπίδραση αξονικής δύναμης-καμπτικής 

ροπής και αξονικής-τέμνουσας δύναμης-καμπτικής ροπής. Παρουσιάζονται τα 

αποτελέσματα της ανάλυσης ενός επίπεδου, μεταλλικού πλαισίου, τα οποία αποδεικνύουν 

τα υπολογιστικά πλεονεκτήματα της διατύπωσης της περιβάλλουσας πολυγωνικής 

γραμμής και για τις δυο περιπτώσεις αλληλεπίδρασης. Επίσης, αναδεικνύεται η επίδραση 

των συνδυασμένων δράσεων στο οριακό φορτίο μιας κατασκευής. 
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