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1. ABSTRACT

Limit analysis of framed structures based on static theorem is treated as a Linear
Programming (LP) problem that maximizes the load factor under equilibrium and yield
constraints. Yield condition is expressed herein in two different ways, i.e. i) as the
intersection of half spaces and ii) as the convex hull/envelop of a fixed number of vertices.
The two formulations differ in terms of number of variables and yield constraints and their
computational efficiency is investigated for axial force-bending moment and axial-shear
force- bending moment interaction. Numerical results of a 2D steel frame are presented
that prove the computational advantages of convex hull formulation for both cases of
interaction, demonstrating also the effect of combined stresses on the load carrying
capacity.

2. INTRODUCTION

Limit analysis aims at determining directly the collapse load and collapse mechanism and
is used for elastoplastic analysis and efficient design of structures. The Linear
Programming (LP) formulation of the problem treats the ultimate load evaluation as an
optimization problem and the two theorems of limit analysis, i.e. the static (lower bound)
theorem and the kinematic (upper bound) theorem reflect the interrelation of primal-dual
LP. Limit analysis with LP was initiated by Charnes and GreenBerg [1] for the ultimate
state analysis of trusses. A variety of alternative mathematical programming procedures for
limit analysis of discrete structures described by piecewise linear elastic-perfectly plastic
constitutive laws were formulated and compared with respect to their computational merit
by Maier et al. [2-6]. Most of this development is based on a piecewise linearization
(PWL) of the convex yield condition that delimits the elastic domain as an intersection of
half-spaces determined by a number of hyperplanes. The aim of this work is to express the
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yield condition as the convex hull of a number of vertices and compare in terms of
computational efficiency the two different formulations for the yield condition, i.e.
equations of yield hyperplanes (standard formulation) and convex hull formulation.

3. PROBLEM FORMULATION OF LIMIT ANALYSIS WITH LP

Plane frames are considered that consist of straight prismatic elements subjected only to
nodal loading for reasons of simplicity. Frame displacements are assumed small enough so
that the equilibrium equations refer to the initial undeformed configuration. It is also
assumed that the structure consists of ng elements and has n; degrees of freedom, while d is
the number of combined stresses (d-component interaction), h is the number of yield
lines/hyperplanes and n, is the number of vertices of the linearized yield surface.

Limit analysis based on the static theorem involves constraints concerning equilibrium and
yielding. In this work, yield condition is established in two different ways: i) as a finite
number of linear inequalities, which geometrically represents the intersection of a finite
number of halfspaces and hyperplanes and ii) as convex hull of a fixed number of vertices.

A convex hull of a set of points C, is the space contained within the polyhedron that
contains all points. Mathematically the convex hull or convex envelope of set C is the
smallest convex set that contains C [7], and is expressed as conv C, containing all convex
combinations of points in C:

convC={fx+...+0,x,|1%€C, 6=>0i=1l.n 6&+..+6,=1} 1)

where @, are nonnegative coefficients and X,..., X, are the points-vertices..

The aim of limit analysis is the determination of the ultimate load that a structure can
sustain. The static approach involving equilibrium and yield conditions enforces the
following LP formulation:

maximize «
subjectto B-s—a-f = f, n, constraints
(2)
N'.s<r 2hn, constraints

s:unrestricted,a >0

where the decision variables are the stresses sand the load factor a. The first set of
equality constraints constitutes the structural equilibrium relationship, where B is the
(ngx3ng) structural equilibrium matrix, s is a (3ne <) vector for all primary stress
resultants, a is a scalar load factor, f is a (nsx1) matrix of nodal loading and fq is the (n¢x1)
fixed nodal load vector. The set of inequality constraints concerns the yield condition
formulation, where N is the (3ng x 2hng) matrix of all scaled -with respect to yield
capacities of stresses- normal vectors and r is the (2hng x1) vector that includes the yield
limits of all yield lines. It is noted that, although the structure is statically indeterminate,
compatibility relations are not considered, allowing the yield conditions to establish the
collapse mechanism. For axial force-bending moment (NM) interaction h=8, while for
axial-shear force-bending moment (NQM) interaction in sections h=32.

The formulation of limit analysis problem using convex hull consideration is given as:



maximize «

subjectto B-s—a-f = f, n, constraints
T.-s-C-6=0 2dn,, constraints (3)
I,-60=1 2n,, constraints

s:unrestricted,#>0 ,a>0

where the decision variables of the problem are the stresses s, parameters € and the load
factor a. The first set of equality constraints represents equilibrium, the second and third
sets of constraints express yield condition using the concept of convex hull, where T is the
(2dng x3n¢;) matrix containing the yield capacities of the stresses, C is the (2dne x2nyne)
matrix containing the coordinates of the vertices of all yield hyperplanes for all elements, @
is the (2nyne x1) vector including the non-negative coefficients &; for all vectors of the
vertices n, for all the elements, and leq is the (2nelx2nyne) matrix that sums the

corresponding &, at every element end. For axial force-bending moment (NM) interaction

d=2 and h=n,=8, while for axial-shear force-bending moment (NQM) interaction in
sections d=3, h=32 and n,=18.

It is noted that convex hull formulation expresses yield conditions with strict equality
constraints, the number of which is independent of the number of the linear
segments/planes of the yield surface. The number of variables, though, is increased as
compared to the standard formulation since parameters 6; are introduced. At this point, it is
worth noting that generally an additional constraint requires more computational effort
than an additional variable [8]. However, this is only indicative for the computational
efficiency of convex hull formulation since the number of the new variables usually differs
from the number of constraint reduction. Since for 3D interaction the number of vertices ny
is noticeably smaller than the number of planes h, convex hull formulation becomes
considerably advantageous in terms of computational efficiency for expressing the yield
condition.

4. NUMERICAL EXAMPLE

The optimization problems described in relations (2) and (3) are implemented in Matlab
code for the analysis of frame steel structures with rigid-perfectly plastic behavior. The
data are processed by linprog solver that is appropriate for linear programming problems.
The aim is to compare the two formulations of yield condition and investigate the influence
of axial force-bending moment interaction on the ultimate load. For this purpose, a steel
plane frame is examined for the following cases:

e Case (a): Pure bending.

e Case (b): Axial force-bending moment interaction (NM interaction) with 1) standard
formulation and 2) convex hull formulation.

e Case (c): Axial-shear force-bending moment interaction (NQM interaction) with 1)
standard formulation and 2) convex hull formulation.

For case (a) the formulation of the problem is simplified since yield constraints consist of
upper and lower bounds (side constraints) for the values of bending moments (no need of
matrix N ). All analyses are conducted on a PC with a Core Duo Quad CPU and 4GB of
RAM and the results of all cases are presented below. Notice that the analysis method
follows the sign convention of matrix structural analysis, whereas final results are
presented on the basis of engineering sign convention.



The example concerns the six-storey, four-bay plane frame, shown in Fig. 1, that is
subjected to increasing lateral and fixed vertical loading. The frame is discretized into 72
elements, 56 nodes and 153 degrees of freedom. The steel grade is S235 with E=2x70®
kN/m?. Sections with A=197.5x 10" m® 1=86970x10"° m*, s;,=4641.3 kN, v,=1013.24 kN,
$2,=928.02 kNm, s5,=928.02 kNm and sections with A=84.46 x10™* m?, 1=23130x10"® m*,
s1y=1984 kN, v,=579.22 kN, s,,=307.15 kNm, s3,=307.15 kNm are employed for all
columns and beams respectively. Analysis results of all cases are presented in Table 1.

20 20 (20 (20 |20

Ta

20 20 (20

N
=}

20
6a

20 |20 |20 (20 |20 120 20

Sa

4a

20 |20

[
<

20

[
=

20 20 l20

3a

13
<

[
<
\_3.0m_J 3.0m |_3.0m_| 30m | 30m [ 3.0m | 30m |

20 {20 |20

2a

20 20 (20 (20 |20

po > |
Il
Il

0 popo o
il sl ol
il il Gl il il i
oo |

20 (20 120 20

17322] 732 45324
40m | 40m ;.  40m 40m
t T t 1

'

Fig. 1: Six-storey, four-bay plane steel frame.

" NM Conwvex NQM Convex
Cases Pure Bending NM Hull NQM Hull
() (by) (b2) (c1) (c2)
maximum load factor a
xim 43.26 40.92 40.92 36.29 36.29
(kN)
number of plastic hinges 49 51 51 52 52
computational time (s) 0.414 0.935 0.911 15.586 1.233
number of variables n 220 220 1388 220 2848
number of equality
. 153 153 591 153 737
constraints N ¢q
number of inequali
. quality — 1168 — 4672 —
constraints N jnq

Table 1: Analysis results of all cases.

The axial-shear force-bending moment interaction corresponds to the smallest value of the
maximum load factor and pure bending consideration to an unsafe greater value, as
expected. Fewer plastic hinges are formed for case (a) that reach their yield limit in terms



of bending moment. Analysis results of standard and convex hull formulation are identical
for both NM and NQM interaction respectively. The computational efficiency of convex
hull formulation is more pronounced for NQM interaction, since convergence is achieved
12.64 times faster. The plastic hinge patterns (number and location) and the corresponding
interaction diagrams for cases (b) and (c) are shown in Fig. 2 and Fig. 3 respectively. The
effect of combined stresses is evident at the yielded column cross sections (Fig. 2a and 3a)
that under pure bending consideration remain elastic. The frame is mainly stressed due to
bending moment (the dispersion of stress points is greater along the bending moment axis)
for all cases, while the effect of shear force for some beam and column cross sections is
more intense than that of axial force, as shown in Fig. 4b.
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Fig. 2: a) Plastic hinge pattern and b) interaction diagram for NM interaction.
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Fig. 3: a) Plastic hinge pattern and b) interaction diagram for NQM interaction.
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Fig. 4: Plan views of NQM interaction diagram.

5. CONCLUDING REMARKS

Limit analysis is treated herein in the framework of mathematical programming. The
ultimate state of a structure and its maximum load carrying capacity is determined by
solving a linear programming problem that aims at maximizing the load factor a subjected
to constraints that enforce equilibrium and yielding (static theorem). In this work, two
formulations of yield condition i.e. the yield polyhedron are examined, i) as the
intersection of a finite number of halfspaces and hyperplanes (standard formulation) and ii)
as a convex hull. The latter is equivalent to a set of equality constraints, the number of
which is independent of the number of the yield hyperplanes. The price, though, is in the
number of variables which is increased compared to the standard formulation, since
nonnegative coefficients @ are introduced. The two formulations differ in terms of number
of variables and constraints and are compared in terms of computational efficiency for
axial force-bending moment (NM) and axial-shear force-bending moment interaction
(NQM). Numerical examples are presented proving that convex hull formulation requires
significantly less computing time compared to the standard one. More specifically, for
NQM interaction the computational efficiency of convex hull formulation corresponds to a
more than 13 times faster solution, compared to the standard one. This is due to the
reduced number of constraints, since it is independent of the linearization of the yield
surface, contrary to the standard formulation. Moreover, the increased number of variables
for convex hull formulation is also associated with the number of vertices, which is
noticeably smaller compared to the number of planes for the case of 3D interaction. Thus,
convex hull formulation expresses advantageously multi-component interaction of the
yield condition enabling fine approximations of the nonlinear yield surface. Furthermore,
the effect of axial force-bending moment and axial-shear force-bending moment
interaction on the ultimate load and state of a structure is demonstrated. The combined
stresses generally correspond to reduced maximum load factors and to collapse
mechanisms with more plastic hinges compared to pure bending consideration. Moreover,
the effect of shear force on the ultimate load carrying capacity is remarkable, even for
frames that are stressed mainly due to bending moment.



ACKNOWLEDGEMENTS

This research has been co-financed by the European Union (European

esiing (n Knowledae sociely |

- soucmmoumensuzAmuNe = NSRF Social Fund — ESF) and Greek national funds through the Operational

=mrmmm Program “Education and Lifelong Learning” of the National Strategic

European Union M H Reference Framework (NSRF) - Research Funding Program: Heracleitus

I1. Investing in knowledge society through the European Social Fund.

REFERENCES

[1]
[2]

[3]

[4]
[5]
[6]

[7]
[8]

CHARNES A., GREENBERG H.J. “Plastic collapse and linear programming”,
Bulletin of the American Mathematics Society, VVol. 57, 1951, pp. 480.

DONATO O.D., MAIER G. “Mathematical programming methods for the inelastic
analysis of reinforced concrete frames allowing for limited rotation capacity”,
International Journal for Numerical Methods in Engineering, VVol.4, 1972, pp. 307-29.
MAIER G, GIACOMINI S, PATERLINI F. “Combined elastoplastic and limit analysis
via restricted basis linear programming”, Computer Methods in Applied Mechanics and
Engineering, VVol.19, 1979, pp. 21-48.

MAIER G. “A matrix structural theory of piecewise linear elastoplasticity with
interacting yield planes”, Meccanica, Vol.5, 1970, pp. 54-66.

MAIER G, GRIERSON DE, BEST MJ. Mathematical programming methods for
deformation analysis at plastic collapse. Comp Struct 1977; 7:599-612.

COCCHETTI G., MAIER G. “Elastic—plastic and limit-state analyses of frames with
softening plastic—hinge models by mathematical programming”, International Journal of
Solids and Structures, Vol.40, 2003, pp. 7219-44.

BOYD S., VANDENBERGHE L. “Convex Optimization”, seventh ed., Cambridge
University Press, 2009.

RAO S. “Engineering Optimization: theory and practice”, fourth ed., John Wiley &
Sons, Inc., Hoboken, New Jersey, 2009.



OPIAKH ANAAYZH KATAZKEYQN ME @EQPHZH KYPTOY [IOAYEAPOY
(CONVEX HULL)

Movoia, M.M.X.
Yroymoeia Awdxtop Zyoing [ToAtikmv Mnyavikodv
EBviko Metoopio [Toivteyveio,
AOnva, EALGO
E-mail: m.m.manola@gmail.com

Kovpovong, B. K.
KaOnynmg Zyoing [oMtikadv Mnyavikaov
EBvikd Metoofro TToivteyveio,
AOnva, EALGO
E-mail: vkoum@central.ntua.gr

HHEPIAHYH

XV mopodco EPYAcia, 1 OPlOKN OVOALGT TAOLGIOK®OV POPE®V, PUCIGUEVN GTO GTATIKO
Oedpnua, avripetoniletor ®g €va TPOPANUO YPOUUKOD TPOYPUUUOTIGULOD, TO OTOio
LEYIGTOTOEL TO POPTIKO GLVIEAESTN] LIO TEPLOPICUOVS 1ooppomiog kol Ooappons. H
oLVON KN dappons eKPPAleTal pe S0 SPOPETIKOVG TPOTOVS: 1) G TOUN NUYDP®V, 2) ®G
Kuptd moAvedpo (convex hull/envelop), mov mepifdrierl cuykekpiéveg kopveég. Ot 600
SWITVITOCELS JAPEPOVY MG TPOS TOV aPlORd TOV HETAPANTAOV KOl TOV TEPIOPIGUDV KoL
OlEPELVATAL 1] OTTOTEAEGLOATIKOTNTA TOVG Yo OAANAETIOpacT EOVIKNG SVVOUNG-KOUTTIKNG
pomig Kot  aEOVIKNG-TEUVOLGOS  duvaunc-kaurtikng pomng. Ilapovcidlovior  ta
ATOTEAECUOTO TNG AVAAVONG EVOG EMIMEOOV, HETOAAMKOD TAAIGIOV, TOL OTTOL0 ATOOEIKVOOVY
TO. VTOAOYIOTIKO TAEOVEKTNUOTO TNG OOTLAMONG NG TEPPAAAOVCOS TOAVYWOVIKNG
YPOUUNG KoL Y10l TIS SO TTEPUTTAOCELS aAANAETiOpaonc. Emiong, avadsikvdeton 1 enidpoon
TOV GLVOVACUEVOV OPAGEDV GTO OPLAKO POPTIO LUIOG KATOUGKELNG.
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