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1. SUMMARY

In the field of plastic design of metal structures, the Limit and Shakedown Analysis (LiSA)
approach has been widely exploited to determine the plastic collapse load capacity, as it
provides advantages in terms of computational robustness in comparison with incremental
non-linear analysis. However, aside to its effectiveness LiSA is mostly applied to steel,
characterized by rigid-perfectly- plastic behavior, while limited research on its exploitation
in case of hardening/ softening materials is registered among the scientific community. The
present work aims to investigate a LiSA formulation suitable for the plastic limit load
assessment in the case of 3D aluminium frame structures. In contrast with steel,
aluminium’s post elastic behavior is characterized by a semantic strain hardening feature,
as well as by its bounded ductility, influencing and limiting the development of the
collapse mechanism. For the purposes of this study, the analytical framework of the
methodology is highlighted and the feasibility of its implementation through deployment
of linearized approximations to codified failure criteria and hardening constitutive models
for aluminium, provided by Eurocode 9, are investigated.

2. INTRODUCTION

Metal and especially steel structures, given their broad plastic deformation capacity, have
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been often at the core of research for the evaluation of the post elastic behavior via the
direct methods of plasticity. In recent years, aluminium based alloys have found increased
structural applications as a modern construction material with architectural appeal and
special characteristics [1] leading to the development of relevant scientific research [2,3]
along with the European design code “Eurocode 97 [4]. As aluminium is characterized by a
semantic strain-hardening feature as well as by its bounded ductility, exploiting the full
potential of the material requires the consideration of its work-hardening behavior.

LiSA approaches that can determine the plastic collapse load of the structure independently
of the exact load history, have been proposed for various yield criteria, stress states and
constitutive models [5,6]. As consideration of kinematic hardening is important for many
engineering problems several attempts have been made on extending the classic Melan-
Koiter theorems to various types of nonlinear hardening behavior. Unlimited kinematical
hardening was soon proved insufficient for incremental collapse (ratcheting) [7] and
research shifted to limited kinematical hardening [8,9,10,12,3]. In particular at [8] a
simplified two-surface model was introduced which was also used in [3,12] for a lower and
an upper bound approach respectively. Almost all the above implementations involve stress
and strain tensors of the material point and the von Mises yield criterion.

In this paper, a formulation based on Melan’s lower bound theorem is presented for the
LiSA of bounded kinematic hardening aluminium frame 3D structures with Eurocode 9’s
combined biaxial bending and axial force criterion. An alternative 2-surface plasticity
model is proposed for linearized local failure criteria in the space of generalized cross
section stresses, which effectively addresses problems containing non-Euclidian-norm
constraints. A numerical example of a multi-storey building is included, utilizing FEM and
the 3-node Timoshenko column-beam element, to validate the proposed formulation and to
study the influence of hardening effect.

3. THEORY

Let 2 be a 3D spatial aluminium frame, discretized by the Finite Element Method (FEM)
into nz column-beam finite elements and ng Gauss points. Let also L™ be a convex
polytope of external loads with ng vertices, applied on . The loading domain L™ is
comprised of a constant loading Vo, the central part, and a variable loading aV', o being a
non-negative scalar. The elastic stress-resultant vectors &' of the form {N, Vy, V,, My, My,
M.} are the respective FEM elastic analysis results to the loading vectors v, and av' such
that:

Vo+ aV' e LT and ¢' = as' + so, i=1,...,n¢ (1)

The total elastoplastic stress-resultant vectors u', which are the superposition of ¢' and a
self equilibrating stress field p, are bounded by the convex set of the local failure criteria
F.i, J=1,...nc. In this framework, the classical Melan's lower bound shakedown theorem
denotes that there exists a unique solution {a, p} for which the structure's plastic work is
bounded — shakedown stress state. The Shakedown Analysis (SDA) problem is written as:

Pj_ (OCSDA, p): max a, S.t.: (2)
'=¢' +p e {F,j}, i=1,..., ng, j:1,...,nG



Hp=0
H is the equilibrium matrix of the structure and equality H p = 0 represents the null space
condition of the problem. The Limited Analysis (LA) problem is a special case of problem
P1 where the loading domain shrinks to a singleton, i.e. ng=1. Problem P; can be formed as
a classical mathematical programming problem and its solution depends on the type/form
of the failure criteria inequalities.

Let {F,'} be the set of local yield criteria limiting the elastic region and {F/'} the set of
local failure criteria defining the ultimate bearing capacity of the cross sections (pic. 1la &
1b). Keeping the previous notation of P, then the SDA problem for structures with limited
kinematic hardening is written as:

P, (OCSDA.LKH; P, 71'): max a, S.t.: (3)
u'=¢'+p e {FJ},i=1,...n¢, j=1,..N¢
r'=¢'+p-n e {F},i=1,...ne, j=1,..n¢
Hp=0

where, the vectors z called the backstresses, define the bouncing of the yield surface Fy
into the ultimate region F.

It is noted that the limited kinematic hardening theory allows the free transposition of the
yield surface Fy without rotation or shape alteration, as long as it remains inside the bounds
of the failure domain F,. Up to date and to the extent of the writers' knowledge the SDA
formulation for limited kinematic hardening has been applied for the von-Mises criterion
or Mises-type loci defining the yield and ultimate failure surfaces, which are Euclidian
norms on the stress deviators (second order/length norms) [3], [9], [10]. In the case of
length norms are used as failure criteria, the conditions of P, are adequate to restrict the
movement of Fy in the domain F, due the triangle inequality theorem (pic. 1a & 1b). In
this work, convex hyperpolyhedra are used as local failure criteria, which are produced as
the piecewise linear approximation of complex higher order surfaces describing the failure
of aluminium hollow sections.
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Pic. 1 The shakedown analysis problem for limited kinematic hardening

In this framework, where sets of linear inequalities are used to describe the failure surfaces,
the case described in pic. 1c arises, which leads to the “relaxation” of the limited kinematic
hardening constraints and possibly into the lack of the uniqueness of the mathematical



programming solution. To address this drawback of P, a modified formulation of the SDA
limited kinematic hardening problem containing only linear inequalities is proposed:

Ps3 (o, p, ®): maxa, S.t.: 4)
7 € {Fmod}, j=1,....¢
‘=6 +p-me{F} =10k, j=1,...nc
Hp=0

Surface Fmog Is defined as a homothetic transformation of the failure surface Fy. In
essence, limiting the backstress vectors z by the surfaces Fnoq, See pic. 2. The proposed
modified surface bounds the movement of the origin of the yield surface F, such that:
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Pic. 2 Proposed modified SDA formulation for limited kinematic hardening with linearized criteria

It can be seen that the size of the modified SDA problem Ps is drastically reduced
compared to P, , as the inequalities u' € {F/} are replaced by the fewer 7 € {Fnod}. It
should be noted that both the yield surface, Fy, and the modified surface, Fmoq, must be
produced from F, by homothecy from F,. Deviation to this principle might not be
unacceptable and shall be investigated in a future work.

4. EXAMPLE

The numerical example concerns a vertically irregular 7-storey 3D Moment Resisting
(MRF) aluminium frame. The configuration and dimensions are described in pic. 3. The
structural members are orthogonal extruded tubes (exact profile assignments shown in pic.
3) and the material selected is the aluminium alloy 6082-T6. According to EC9 the selected
closed perimeter sections assure class 1 and exhibit extended post-elastic deformation
capability thus allowing for full plastic design. At each floor level, diaphragm constraints
are imposed in order to ensure solid disk movement. The gravitational loads of the
structure, which comprise the central part of the loading, are: dead 2.9kN/m? and imposed
3.5kN/m?. The lateral part of the loading, which is considered variable, is wind pressure -
calculated according to EC1 - along the two principal directions of the frame (wind x-x,
wind y-y). The resultant forces of the upwind and downwind pressure, W, and Wy, are
applied to the centroids of each floor (Table 1), i.e. the master joints of each diaphragm.
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Pic. 3 Seven storey spatial aluminium moment resisting frame & section assignments.

The frame is discritized with FEM using the 3-node Timoshenko element containing 2-
Gauss points, which is capable of capturing shear virtual work along with bending [13].
The design load combinations for ULS and SLS are considered, according to EC1, and the
sections are verified with the EC9 guidelines. The decisive design checks are PMM
strength checks, for ULS, and the control of horizontal drifts of the floors for SLS. It has to
be noted that the relatively slack limit of H/300, used in the limitation of lateral
displacements, is marginally satisfied by the behavior of the structure under review.

Floor Fl.1 Fl. 2 Fl. 3 Fl. 4 FI.5 FI. 6 Fl. 7

kN kN kN kN kN kN kN
Wiy 65,51 43,24 43,24 62,26 62,26 62,26 62,26
W,y 125,78 83,01 43,24 62,26 62,26 62,26 62,26

Table 1. Lateral wind forces of directions x-x, y-y

The material softening due to welds near the moment resisting connections, HAZ, is
assessed in the design and analysis of the aluminium frame by the introduction of reduction
factors for the yield p,na; fo and ultimate py na; fu sStrengths.

The elastic-plastic non-linear behavior is modeled by the plastic hinge method. The
proposed two surface plasticity model described in Section 3, is assigned to the plastic
hinges that coinside with the Gauss points FEM grid. Column behavior is governed by the
PMM interaction criterion of Eq. 6.2.9.2. of EC9. The linearization of the criterion
produces a set of 1216 facets in the space of N, My, M, (pic. 4), inscribed in the convex
hull of the PMM failure surface. Then the linearized hull is scaled by using the respective
capacities of the limit state under question.

The stress-component capacities for each limit state are calculated based on EC9
guidelines. The respective HAZ affected values are produced by multiplying with the
reduction factors, which for alloy 6082-T6 are p,na; = 0,42 and pyhaz = 0,48.



Pic. 4 EC9 Linearized PMM interaction failure surface — plastic hinge for aluminium columns.

Non-linear analyses are run with the variable load vectors Wy and W, following the
methodology of LA and SDA problems P; and P3, and the variable load domain multipliers,
a, are calculated. Three series of analysis cases are produced using a) the elastic-perfect
plastic model with the yield surface Fy,, b) the elastic-perfect plastic model with the
ultimate surface F, and c) the proposed 2-surface methodology (Fy, Fmoed), in order to
measure the effect of limited kinematic hardening on the safety factors.

Problem LA(a) LA(b) LA(C) Pl(a)SDA- Pl(b)SDA- P3(C) SDA- Pl(a) .SDA- Pl(b) 'SDA- P3(c) SDA-tri
cyc cyc cyc tri tri

OLA  OLA QALALK OsDAcyc OSDA-cyc. OSDALKH- OSDA-tri  OSDA-tri  OSDA.LKH-

H cyc tri

W,y 413 540 5,40 3,21 4,15 3,21 - - -

W, 3,49 457 4,57 2,89 3,82 2,95 - - -
Wy+W, 3,19 432 432 - - - 3,48 4,56 4,52

Table 2. Plastic load multipliers for LA & SDA problems with/without limited kinematic hardening

In the inelastic analysis cases contained in Table 2 three shapes of loading domains are
included. For LA it is the obvious single-point set, LY. For “SDA-cyc” L® is a uniaxial,
symmetric-about zero, set [-Wy; W,] or [-Wy; W,]. In the “SDA-tri” case the variable load
domain L® is a triangle set [0; W, ; W,]. It is noted that the effect of limited kinematic
hardening on the safety multipliers is limited to the SDA cases, see problems P3*°*®* and
SPATT compared to problems Py - rigid plastic material with ultimate stress f, (Table
2). It is rather interesting that for loading W, low cycle fatigue failure arises.

4. COMMENTS - CONCLUSION

A new two-surface methodology is proposed to simulate the limited kinematic hardening
of aluminium 3D frames, via the direct methods of plasticity with linearized yield/failure
criteria. The framework presented makes use of a new modified surface parallel to the
ultimate bounding surface, to overcome the classical two-surface model’s weakness when
the constraints are not length norms. The numerical example shows the applicability of the
proposed methodology along with the effectiveness and robustness for LiSA on aluminium
frame structures, which exhibit semantic post elastic features.



The FEM modeling and elastic analyses were carried out by a FEM research code [13]
implementing the 3D Timoshenko 3-node column-beam element, diaphragm constraints
and capable of exporting the H matrices. The mathematical programming problems were
input to MOSEK [14] with the aid of linking Matlab utilities built for the purpose. Table 3
presents the sizes of the problems solved.

Problem LA LALKH Pl SDA-cyc. P3 SDA-cyc. Pl SDA-tn P3 SDA-tr
Unknowns 10021 20041 10021 20041 10021 20041
Constraints 189904 373424 373424 556944 556944 740464

Table 3. Size, unknowns and constraints, of LA and SDA problems solved
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IHEPIAHYH

2TOoV TAOGTIKO GYEOOOUO UETOAMKAOV KOTOOKELAOV 1 OPLOKY OVOALGT KOl 1 0vAALON
npocopproyns (LISA) £xovv ypnoiomombel eKTeEVOE Y10 TOV TPOCIIOPIGUO TOV TAAGTIKOD
Qoptiov Katdppevong KaOMOG TapEYouy TO TAEOVEKTNIO TNG VTOAOYIGTIKNG OUECOTNTOG
CLUYKPITIKOL UE TNV UN-YPOUUIKY Pnuotiky avdivon. Qotoéco, mépa  omd Vv
OTOTEAECUATIKOTNTA TOVS, G €Ml TO TAEloTOV Ppickovv epapuoyn oTov ydAvPa, Tov
yopoktnpiletor amd TELEID EAUCTOTANGTIKY) CUUTEPIPOPE EVD KOTAYPAPETOL TEPLOPIGUEVT
EPELVOL OYETIKA HE TNV EKUETOAAELOT] TOVG GE VAIKG TOL TAPOLGLALOLV £VIOVO TO
eowvopevo g Kpatvvons. H mapodoo epyocio otoygvel otnv  OlEPELVNOT  HIOG
datvmwong LISA kotdAnAng ywo v €0pecn TOL TAAGTIKOD QOPTIOV KATAPPELONG
KOTOOKELMV OMOTEAOVUEVOV Omd TPOIoTATO TANIGIOL OAOLUVIOV. X ovtifeon pe tov
YGALPa 1 LETAAEGTIKY] GLUUTEPIPOPA TOV dOUIKOD alovpviov, 1 ool yapaktnpiletor amd
ovveyN KpATuven Kabm¢ Kot pHetopévn Stféstun TAaSTILOTNTA, EXNPEALEL CUOVTIKA TNV
e€EMEn tov pnyoviopov katdppevons. [ Tovg OKOMOVG TG MOPOLGOS UEAETNG
EMIONUOIVETAL TO OVOALTIKO TAGICI0 NG TPoTeEWOUEVNC peBodoroyiag Kol TapdAAnio
eetdletonr 1 SvvATOTNTO EQOPUOYNG NG HEC® NG OVOATTUENG YPOLLUIKOTOUUEVMV
TPOGEYYIcCEMV GE KPP0 AoTOYIOG KOl KPOTUVOUEVO KOTAOTOTIKO VOUO LAIKOV OTmG
TapEXOVTOL EIOTKA Y10 TO oAovpivio amd tov Evpokmduka 9.
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