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1. ABSTRACT

In this work, we offer an approximate numerical procedure for solving the problem of static
out-of-plane thermal buckling of continuously welder railway tracks (CWRs). Initially, a
brief overview of the underlying theory is presented, a well-accepted buckling model is
adopted and the corresponding equilibrium equation is formulated in dimensionless form.
Considering all relevant boundary and continuity conditions, the resulting equation is solved
numerically, based on element-free Galerkin methods and adopting a 4™ order polynomial
approximation for the postbuckling CWR shape. Utilizing advanced symbolic and algebraic
manipulations, we reach to a rather easily applicable iterative procedure, which may lead to
acceptable solutions in terms of critical points and equilibrium paths. A numerical
application based on experimental evaluation and/or field observations shows very good
accuracy, indicating of the validity of the proposed methodology.

2. INTRODUCTION

In a conventional track, the ends of the rail are joined together mechanically with a gap
between, in order to allow thermal expansions in summer. Consequently, a structural
weakening of the track is inevitable, following to an increase of the track maintenance cost
and power consumption of the running train. These drawbacks became more serious with
the introduction of modern high-speed trains.

Hence, over the past three decades significant research work was performed, with goals the
improvement of ride quality, the increase of rail and rolling stock fatigue life and reduction
of cost. These were the principle motivation to changing to Continuously Welded Tracks
(CWRs), which differ from the jointed rail track in that rails are welded together in lengths
as long as several kilometres. However, with the elimination of the joints, the constrained
thermal expansion and contraction-induced compressive and tensile forces created the
possibility of track buckling in the summer and tensile pull-apart failures in the winter often



causing catastrophic derailments. For this reason, substantial research has been conducted to
address the CWR safety and performance through the development of analytical models [1-
3], test investigations, parameter characterization studies, measurement technique
development, and improvement in track maintenance practices. One of the major goals of
this research aimed in understanding and controlling failure modes caused by thermal loads
in the rails. Two of these modes, greatly influencing the safety of vehicle operations include
the following: (a) loss of lateral stability (track buckling, track shift, and radial breathing)
and (b) rail pull apart (rail break under high tensile forces).

Based on a typical CWR structure, as depicted in Figure 1, the most important buckling
parameters, to be discussed in detail in later sections, are the tie-ballast resistance, the rail
fastener longitudinal and torsional resistance and CWR neutral temperature (i.e. that
temperature at which the net longitudinal force in the rails is zero).
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Fig. 1: Typical track structure

In the present work, we focus on investigating the static out-of-plane (lateral) thermal
buckling of CWRs, and presenting an approximate technique for solving the foregoing
problem. After a brief discussion of the underlying theory, the equilibrium equations are
derived, using large deflection stability analysis and a well-posed model. Thereafter,
adopting flat Galerkin schemes, the equations at hand are solved numerically. An indicative
example is finally presented, based on experimental evaluation and/or field observations,
showing adequate accuracy and efficiency, a fact indicating that the proposed method can
be used for structural design purposes.

3. CWR BUCKLING THEORY

3.1 Buckling mechanism

We consider a long straight CWR track, shown in Figure 2, having a small initial sinusoidal
type misalignment described by an amplitude 6o and a wavelength 2Lo. With increase in rail

temperature, the compressive force P will also increase, producing some growth in the initial
misalignment.
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Fig. 2: Pre- and Postbuckling Track Configurations



Experiments as well as filed observations have revealed that as temperature (and the
corresponding rail force) increase to a certain maximum (critical) level, the initial
misalignment will also increase to an amplitude of ws, which is in fact an unstable
equilibrium state. At his state, the track may buckle out suddenly (in a snap-through manner)
into a new lateral position, wc, spanning a length of 2L. The corresponding possible
equilibria are shown in Figure 3, where two distinct temperature values, namely ATBmax
(bifurcation temperature) and ATBmin are present, in between which multiple equilibrium
positions can exist.
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Fig. 3: Buckling Response Curve

From point A to point B we have stability (fundamental path), as well as from Z to infinite
deflections (remote unacceptable configurations). Branch BZ is unstable, leading to a typical
snap-through situation. Hence, the range between ATBmin and ATBmax represents the
buckling regime of CWR tracks. Whereas the track will buckle at ATBmax with no external
energy, it can also lose stability at ATBmin if sufficient external energy is provided to the
track. Below ATBmin the system is globally stable.

3.2 Drop of force — Buckle influence zone

A feature of the buckling mechanism described above is the accompanying rail force drop
(energy release) in the buckled zone, compared with that of the prebuckling force value. This
is due to the large lateral displacement contributing to the rail extension that releases some
of the compressive load. Thus, the rail force distribution in the buckled and adjacent zones
is significantly altered, as depicted in Figure 4, resulting also to the alternation of the CWR
neutral temperature after the buckling incident.
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Fig 4: Rail Force Distribution after Buckling



3.3 Track model

Almost all deterministic buckling theories [4] for CWR are based on the mechanistic track
model given in Figure 5. The buckling force is the combined compressive load the two rails,
which depends on the rail cross-sectional area and the temperature rise. The lateral resistance
generated between the ties and the ballast, as well as the longitudinal and torsional
resistances generated in the rail fasteners, offer the resistive forces to the buckling force.
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Fig 5: Track Model

The lateral resistance depends on nonlinear tie-ballast spring characteristic because the tie
displaces laterally through the ballast. The longitudinal resistance depends on longitudinal spring
characteristic of the rail/tie/fastener/ballast. The rail-to-tie fastenings also offer rotational rigidity
(modeled by torsional springs), which reacts against the rail’s tendency to rotate during the
buckling deformations.

4. DIFFERENTIAL EQUATION FORMULATION

After assuming that misalignment is approximated according to the expression

X 2 X 4
wo (%) = 8 [1 -2 (L—O) + (L—O) ] (1)
and accounting for the geometry and sign convention — coordinate system of Figure 6, and
the chosen model, we can now proceed with the formulation of the equilibrium equations.
For the buckled zone, i.e. for —L < x < L, the differential equation of equilibrium can be

written as

d4 _ dZ
Bl o + (P —10) 2 + P22 + F(w(x)) = 0 @)

where El,, is the bending resistance of both rails, P the thermal compressive force and

F(w(x)) is the distribution function of the lateral resistance, which here is considered of the
following exponential form:
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Fig 6: Geometry and Sign Convention



Additionally, T, is the linear torsional resistance per unit track length.

In the adjacent zones,|x| > L, the longitudinal resistance is considered proportional to the
relevant deformation U, so one may write

U’ —p?U=0 4)
In the above equation, p? = i, where ky is the longitudinal stiffness and EA is the axial

stiffness of both rails and the prime denotes differentiation with respect to x.

The solution of eq. (4) should be bounded for very large values of x, and hence we can easily
find that this equation drops one order and becomes of the form

U+pU=0 5)
Equations (2) and (5) are strongly coupled through the so-called compatibility conditions
(continuity of longitudinal displacements), given by

U(L) = —%—X—aATL,U’(L) = —%+aAT (6a,b)

where, as a product of cumbersome manipulation and solving with respect to P
1.L 128, (L 48, (L
X = Efo w'(x)2 dx — L—g"fo x?w(x)dx + L—(Z:Jfo w(x)dx (7

Introducing the following dimensionless and other simplification parameters

_ X _W(X) _80 _LO _ T —2_ka2 _ L _ L 2 _
X_LIB(X)_ L 'G_Lo'y_ L’ —EA'P - EA 'pl_EAFL'pZ_EAFP'AZ_

IAL2 for each track, a the thermal expanion coeffient of steel )

A

Combining all the above, we reach to a strongly nonlinear integro-differential equation
governing the problem in dimensionless form:
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Due to the profound symmetry of the problem, without any loss of generality, B(x) is

restricted between 0 and 1, and hence eq. (9) is associated to the following conditions:
T=0

B(1) =B (1) = 0,p'(0) = 0,B(0) = oy (110-5)

5.  PROPOSED NUMERICAL SCHEME

We employ in what follows a numerical scheme based on the flat Galerkin methods [5],

adopting a basis function for B(x) of a 4" order polynomial form, which satisfies eq. (9) and

conditions (11). Imposing the three first of these conditions, the basis function yields

BOO = Aax* +3 (Ao — 5AC —2 (Ao — ADX? + A, (12)

Substituting the above expression in eq. (9) and imposing the last of conditions (11), after

symbolic computations in Mathematica [6], we reach to a 3™ order polynomial equation with

respect to A,, the coefficients of which are lengthy expression of the parameters involved,

not given here for brevity. It should be noted that this equation possesses always one real

root, and perhaps three real roots.

The proposed scheme consists of the following steps.

e Computation of the real roots of f(A,) = 0.

e Insertion in eq. (9) of a non-zero value of T and based on the outcome of the previous
step numerical solution with respect to A, for =0, which in fact is the magnitude of the
dimensionless deflection in the middle for this value of T. It is possible that more than



one distinct values for A, will appear; these will be later qualitatively appraised, in the
sense of producing structurally acceptable configurations.
e Plotting the Ay/T curves and eliminating inadmissible solutions.

6. DISCUSSION - NUMERICAL EXAMPLE

The substantial difficulty of the method lies in the correct choice of the order of magnitude
for the length 2L of the buckled zone. This is so, since all dimensionalizations are based on
its value. However, given that rail profiles are quite slender, especially out-of-plane, one may
initially estimate L by adopting a large slenderness Az, together with the requirement L to be
multiple of Lo. Hence, having selected the rail profile, may lead to an acceptable estimation
of L. If during the process, and for small values of T, f(A,) = 0 has three real roots, then L
is increased gradually, until only one root is reached. If again this increase does not lead to
this goal, L is gradually decreased and so on. The whole procedure can be easily programmed
until the value of L is appropriately estimated.

Additionally, there exist admissible starting and ending points for the values of the initial
misalignment as well as the expected length of the buckled zone. Evidently, from field
observations in the US and Australia, it turned out that (in cm): 250 < 2L, < 1250, 1220 <
2L < 2450 and 1.30 < §, < 8.00.

For the numerical example that follows the choice of the aforementioned values was rather
conservative: 2Ly = 550 cm, 2L = 1600 cm and 6, = 4,50 cm. Furthermore, the most
popular rail section in Europe was used, namely 60E1 Vignole (flat-bottomed, equivalent to
UIC 60 profile), fully consolidated ballast, concrete ties and Pantrol fasteners. These choices
lead to the following values of the various parameters involved [7]: kr= 2,812 kN/cm? , 10 =
44,48 kN, 1= 1024,6 cm*, A= 153,4 cm?, Fp=0,53574 kN/cm, FL=0,17858 kN/cm. Similar
experimental values (not of geometry), adequately correlated, were reported in [8] and [9].
The proposed technique started giving one real root for A, at approximately 2L = 1720 cm,
without any computational difficulties or delays. This root was found equal to 1,32244, and
based on it the equilibrium path was evaluated iteratively. Of course, for every new value of
L, all dimensionless parameters were re — computed at each step. The method yielded quite
satisfactory results, since the equilibria, given in Figure 7, strongly resemble the theoretical
ones (see Fig. 3) with ATmin = 28° C and ATmax = 45° C (gross values).
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Fig 7: Equilibrium paths of the exemplary numerical application



This result is a strong indication of the validity of the proposed approximate technique. The
work is ongoing, and it will eventually produce a software package for structural design of
CWR tracks.

7. CONCLUSIONS

The most important conclusion of this work are:

1. The lateral (out-of-plane) thermal buckling problem of CWR tracks is multi-parametric,
strongly nonlinear and profoundly difficult to deal with.

2. The proposed approximate numerical procedure seems robust, stable, with a strong
theoretical background and easy to handle; it may produce reliable results, based on
well-accepted parameter values.

3. Ongoing work, aiming at more sophisticated modeling and programming, could serve
as a valuable tool for structural design purposes.
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IHEPIAHYH

YV Topodon EPYOCIO TPOCPEPETOL U0 TPOGEYYIOTIKY aplBuntikny péBodog yuoo v
eMIAVLON TOL TPOPANUATOC BePKOD €KTOG EMTESOV (KTAELPIKOV») AVYICUOD GULVEXMDG
GUYKOAAUEVOV GLONPOTPOYIDV. ApYIKd TopaTiBETOL U0 GUVOTTIKY OVOPOPE TNG OANG
Oewpiag, kot Katdmt viodeteitor Eva VPEMC OmOdEKTO PUNYOVIKO Tpocopoiopa. Me Bdon
0VTO, LOPPOTOLOVVTOL O1 EEICMCELS ICOPPOTING GE 0OLAGTAUTN LOPPT.

Aoaupdvovtog v’ Oy OAEC TIG GLVOPLOKEC CLVONKEG KOl TIG oLVONKeEG cLUPBOTOTNTOC
YEVIKEVUEV®V TIOPALOPPAOCEMVY, 01 €V AOY® €E10MGELS emAvOvVTOL aplBunTikd pe Paorn
Kkatd tekpnplo ovpPotikn péBodo Galerkin. H petadvyiopikn mopapoppmon g TpoyLis
Bewpeitan poperig molvdvopov 4°° Pabpov, Kol KAvoviag YpPNoYN TPOYWPNUEVOV
GUUPBOAMKOV HOONUOTIKOV VTOAOYIGUMY 0dNYOVUOOCTE GE M0 EMOVOANTTIKY Olodkacia,
€UKOAO €QUPUOGIUT KOL EVIOGOOUEVT] O AOYICUIKO. AvTH 00nYyel GE AMOJEKTEG AVGELC
Boaciopéveg o€ TEWPUUATIKA ATOTELECUATO KOl ETL TOTOV TOPATNPNGELS, LE IKOVOTOMTIKN
aKpifelo Ko TPOONTIKEG Y10l TEPOUITEP® EPELVO. Ko €EEMEN, LE OKOTO TO OOUOGTATIKO
GYEOOCUO.



