
 

 
 
 
 

THERMAL BUCKLING OF CONTINUOUOSLY WELDED RAILWAY TRACKS 
 
 

Dimitrios S. Sophianopoulos, PhD 
Associate Professor 

Department of Civil Engineering, University of Thessaly 
Volos, Greece 

E-mail: dimsof@civ.uth.gr, dimsoph@otenet.gr 
 

Jamil – Sotirios Kandalaft, MSc 
Department of Civil Engineering Educators, School of Pedagogical and Technological 

Education, Athens, Greece 
E-mail: j.swt.kandalaft@hotmail.gr 

 
 
 
 

1. ABSTRACT 
 
In this work, we offer an approximate numerical procedure for solving the problem of static 
out-of-plane thermal buckling of continuously welder railway tracks (CWRs). Initially, a 
brief overview of the underlying theory is presented, a well-accepted buckling model is 
adopted and the corresponding equilibrium equation is formulated in dimensionless form. 
Considering all relevant boundary and continuity conditions, the resulting equation is solved 
numerically, based on element-free Galerkin methods and adopting a 4th order polynomial 
approximation for the postbuckling CWR shape. Utilizing advanced symbolic and algebraic 
manipulations, we reach to a rather easily applicable iterative procedure, which may lead to 
acceptable solutions in terms of critical points and equilibrium paths. A numerical 
application based on experimental evaluation and/or field observations shows very good 
accuracy, indicating of the validity of the proposed methodology. 
 
 
2. INTRODUCTION 
 
In a conventional track, the ends of the rail are joined together mechanically with a gap 
between, in order to allow thermal expansions in summer. Consequently, a structural 
weakening of the track is inevitable, following to an increase of the track maintenance cost 
and power consumption of the running train. These drawbacks became more serious with 
the introduction of modern high-speed trains. 
Hence, over the past three decades significant research work was performed, with goals the 
improvement of ride quality, the increase of rail and rolling stock fatigue life and reduction 
of cost. These were the principle motivation to changing to Continuously Welded Tracks 
(CWRs), which differ from the jointed rail track in that rails are welded together in lengths 
as long as several kilometres. However, with the elimination of the joints, the constrained 
thermal expansion and contraction-induced compressive and tensile forces created the 
possibility of track buckling in the summer and tensile pull-apart failures in the winter often 



 

causing catastrophic derailments. For this reason, substantial research has been conducted to 
address the CWR safety and performance through the development of analytical models [1-
3], test investigations, parameter characterization studies, measurement technique 
development, and improvement in track maintenance practices. One of the major goals of 
this research aimed in understanding and controlling failure modes caused by thermal loads 
in the rails. Two of these modes, greatly influencing the safety of vehicle operations include 
the following: (a) loss of lateral stability (track buckling, track shift, and radial breathing) 
and (b) rail pull apart (rail break under high tensile forces). 
Based on a typical CWR structure, as depicted in Figure 1, the most important buckling 
parameters, to be discussed in detail in later sections, are the tie-ballast resistance, the rail 
fastener longitudinal and torsional resistance and CWR neutral temperature (i.e. that 
temperature at which the net longitudinal force in the rails is zero). 
 

 
 

Fig. 1: Typical track structure 
 
In the present work, we focus on investigating the static out-of-plane (lateral) thermal 
buckling of CWRs, and presenting an approximate technique for solving the foregoing 
problem. After a brief discussion of the underlying theory, the equilibrium equations are 
derived, using large deflection stability analysis and a well-posed model. Thereafter, 
adopting flat Galerkin schemes, the equations at hand are solved numerically. An indicative 
example is finally presented, based on experimental evaluation and/or field observations, 
showing adequate accuracy and efficiency, a fact indicating that the proposed method can 
be used for structural design purposes. 
 
 
3. CWR BUCKLING THEORY 
   
3.1 Buckling mechanism 
 
We consider a long straight CWR track, shown in Figure 2, having a small initial sinusoidal 
type misalignment described by an amplitude δ0 and a wavelength 2L0. With increase in rail 
temperature, the compressive force P will also increase, producing some growth in the initial 
misalignment.  

 

 
 

Fig. 2: Pre- and Postbuckling Track Configurations 



 

Experiments as well as filed observations have revealed that as temperature (and the 
corresponding rail force) increase to a certain maximum (critical) level, the initial 
misalignment will also increase to an amplitude of wB, which is in fact an unstable 
equilibrium state. At his state, the track may buckle out suddenly (in a snap-through manner) 
into a new lateral position, wC, spanning a length of 2L. The corresponding possible 
equilibria are shown in Figure 3, where two distinct temperature values, namely ΔΤBmax 
(bifurcation temperature) and ΔΤBmin are present, in between which multiple equilibrium 
positions can exist. 
 

 
 

Fig. 3: Buckling Response Curve  
 
From point A to point B we have stability (fundamental path), as well as from Z to infinite 
deflections (remote unacceptable configurations). Branch BZ is unstable, leading to a typical 
snap-through situation. Hence, the range between ΔΤBmin and ΔΤBmax represents the 
buckling regime of CWR tracks. Whereas the track will buckle at ΔΤBmax with no external 
energy, it can also lose stability at ΔΤBmin if sufficient external energy is provided to the 
track. Below ΔΤBmin the system is globally stable. 
 
3.2 Drop of force – Buckle influence zone 
 
A feature of the buckling mechanism described above is the accompanying rail force drop 
(energy release) in the buckled zone, compared with that of the prebuckling force value. This 
is due to the large lateral displacement contributing to the rail extension that releases some 
of the compressive load. Thus, the rail force distribution in the buckled and adjacent zones 
is significantly altered, as depicted in Figure 4, resulting also to the alternation of the CWR 
neutral temperature after the buckling incident. 
 

 
 

Fig 4: Rail Force Distribution after Buckling 



 

3.3 Track model 
 
Almost all deterministic buckling theories [4] for CWR are based on the mechanistic track 
model given in Figure 5. The buckling force is the combined compressive load the two rails, 
which depends on the rail cross-sectional area and the temperature rise. The lateral resistance 
generated between the ties and the ballast, as well as the longitudinal and torsional 
resistances generated in the rail fasteners, offer the resistive forces to the buckling force. 
 

 
 

Fig 5: Track Model 
 
The lateral resistance depends on nonlinear tie-ballast spring characteristic because the tie 
displaces laterally through the ballast. The longitudinal resistance depends on longitudinal spring 
characteristic of the rail/tie/fastener/ballast. The rail-to-tie fastenings also offer rotational rigidity 
(modeled by torsional springs), which reacts against the rail’s tendency to rotate during the 
buckling deformations. 
 
 
4. DIFFERENTIAL EQUATION FORMULATION 
 
After assuming that misalignment is approximated according to the expression 
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and accounting for the geometry and sign convention – coordinate system of Figure 6, and 
the chosen model, we can now proceed with the formulation of the equilibrium equations. 
For the buckled zone, i.e. for െL  x  L, the differential equation of equilibrium can be 
written as 
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where EI is the bending resistance of both rails, Pഥ the thermal compressive force and 
Fሺwሺxሻሻ is the distribution function of the lateral resistance, which here is considered of the 
following exponential form: 
Fሺwሻ ൌ F  ሺF െ Fሻe୵	, Fሺ0ሻ ൌ F		, lim

୵→ஶ
Fሺwሻ ൌ F	 (3) 

 

 
 

Fig 6: Geometry and Sign Convention 



 

Additionally, τ is the linear torsional resistance per unit track length. 
In the adjacent zones,|x|  L, the longitudinal resistance is considered proportional to the 
relevant deformation U, so one may write 
U΄΄ െ ρଶU ൌ 0 (4) 

In the above equation, ρଶ ൌ

ா

, where ݇ is the longitudinal stiffness and EA is the axial 

stiffness of both rails and the prime denotes differentiation with respect to x. 
The solution of eq. (4) should be bounded for very large values of x, and hence we can easily 
find that this equation drops one order and becomes of the form 
U΄  ρU ൌ 0  (5) 
Equations (2) and (5) are strongly coupled through the so-called compatibility conditions 
(continuity of longitudinal displacements), given by 
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where, as a product of cumbersome manipulation and solving with respect to Pഥ 
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Introducing the following dimensionless and other simplification parameters  
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Lଶ	for	each	track, α	the	thermal	expanion	coeffient	of	steel (8) 

Combining all the above, we reach to a strongly nonlinear integro-differential equation 
governing the problem in dimensionless form: 
ଶ
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Due to the profound symmetry of the problem, without any loss of generality, βሺχሻ is 
restricted between 0 and 1, and hence eq. (9) is associated to the following conditions: 

βሺ1ሻ ൌ β΄΄	ሺ1ሻ ൌ 0	, β΄ሺ0ሻ ൌ 0	, βሺ0ሻฑ
ୀ

ൌ σγ (11α-δ) 
 
 
5. PROPOSED NUMERICAL SCHEME 
 
We employ in what follows a numerical scheme based on the flat Galerkin methods [5], 
adopting a basis function for βሺχሻ of a 4th order polynomial form, which satisfies eq. (9) and 
conditions (11). Imposing the three first of these conditions, the basis function yields 

βሺχሻ ൌ Aସχସ 
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Substituting the above expression in eq. (9) and imposing the last of conditions (11), after 
symbolic computations in Mathematica [6], we reach to a 3rd order polynomial equation with 
respect to ସ, the coefficients of which are lengthy expression of the parameters involved, 
not given here for brevity. It should be noted that this equation possesses always one real 
root, and perhaps three real roots. 
The proposed scheme consists of the following steps. 
 Computation of the real roots of fሺAସሻ ൌ 0. 
 Insertion in eq. (9) of a non-zero value of T and based on the outcome of the previous 

step numerical solution with respect to A for χ=0, which in fact is the magnitude of the 
dimensionless deflection in the middle for this value of T. It is possible that more than 



 

one distinct values for A will appear; these will be later qualitatively appraised, in the 
sense of producing structurally acceptable configurations. 

 Plotting the A/Τ curves and eliminating inadmissible solutions. 
 
 
6. DISCUSSION – NUMERICAL EXAMPLE 
 
The substantial difficulty of the method lies in the correct choice of the order of magnitude 
for the length 2L of the buckled zone. This is so, since all dimensionalizations are based on 
its value. However, given that rail profiles are quite slender, especially out-of-plane, one may 
initially estimate L by adopting a large slenderness λz, together with the requirement L to be 
multiple of L0. Hence, having selected the rail profile, may lead to an acceptable estimation 
of L. If during the process, and for small values of T, fሺAସሻ ൌ 0 has three real roots, then L 
is increased gradually, until only one root is reached. If again this increase does not lead to 
this goal, L is gradually decreased and so on. The whole procedure can be easily programmed 
until the value of L is appropriately estimated. 
Additionally, there exist admissible starting and ending points for the values of the initial 
misalignment as well as the expected length of the buckled zone. Evidently, from field 
observations in the US and Australia, it turned out that (in cm): 250  2L  1250, 1220 
2L  2450 and 1.30  δ  8.00.  
For the numerical example that follows the choice of the aforementioned values was rather 
conservative: 2L ൌ 550	cm, 2L ൌ 1600	cm and δ ൌ 4,50	cm. Furthermore, the most 
popular rail section in Europe was used, namely 60E1 Vignole (flat-bottomed, equivalent to 
UIC 60 profile), fully consolidated ballast, concrete ties and Pantrol fasteners. These choices 
lead to the following values of the various parameters involved [7]: kf = 2,812 kN/cm2 , τ0 = 
44,48 kN, Izz = 1024,6 cm4, A = 153,4 cm2, FP = 0,53574 kN/cm, FL=0,17858 kN/cm. Similar 
experimental values (not of geometry), adequately correlated, were reported in [8] and [9]. 
The proposed technique started giving one real root for Aସ  at approximately 2L = 1720 cm, 
without any computational difficulties or delays. This root was found equal to 1,32244, and 
based on it the equilibrium path was evaluated iteratively. Of course, for every new value of 
L, all dimensionless parameters were re – computed at each step. The method yielded quite 
satisfactory results, since the equilibria, given in Figure 7, strongly resemble the theoretical 
ones (see Fig. 3) with ΔΤmin = 280 C and ΔΤmax = 450 C (gross values). 
 

 
 

Fig 7: Equilibrium paths of the exemplary numerical application 



 

This result is a strong indication of the validity of the proposed approximate technique. The 
work is ongoing, and it will eventually produce a software package for structural design of 
CWR tracks. 
 
 
7. CONCLUSIONS 
 
The most important conclusion of this work are: 
1. The lateral (out-of-plane) thermal buckling problem of CWR tracks is multi-parametric, 

strongly nonlinear and profoundly difficult to deal with. 
2. The proposed approximate numerical procedure seems robust, stable, with a strong 

theoretical background and easy to handle; it may produce reliable results, based on 
well-accepted parameter values. 

3. Ongoing work, aiming at more sophisticated modeling and programming, could serve 
as a valuable tool for structural design purposes. 
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ΠΕΡΙΛΗΨΗ 

  
Στην παρούσα εργασία προσφέρεται μια προσεγγιστική αριθμητική μέθοδος για την 
επίλυση του προβλήματος θερμικού εκτός επιπέδου («πλευρικού») λυγισμού συνεχώς 
συγκολλημένων σιδηροτροχιών. Αρχικά παρατίθεται μια συνοπτική αναφορά της όλης 
θεωρίας, και κατόπι υιοθετείται ένα ευρέως αποδεκτό μηχανικό προσομοίωμα. Με βάση 
αυτό, μορφοποιούνται οι εξισώσεις ισορροπίας σε αδιάστατη μορφή. 
Λαμβάνοντας υπ’ όψη όλες τις συνοριακές συνθήκες και τις συνθήκες συμβατότητας 
γενικευμένων παραμορφώσεων, οι εν λόγω εξισώσεις επιλύονται αριθμητικά με βάση τη 
κατά τεκμήριο συμβατική μέθοδο Galerkin. Η μεταλυγισμική παραμόρφωση της τροχιάς 
θεωρείται μορφής πολυώνυμου 4ου βαθμού, και κάνοντας χρήση προχωρημένων 
συμβολικών μαθηματικών υπολογισμών οδηγούμαστε σε μια επαναληπτική διαδικασία, 
εύκολα εφαρμόσιμη και εντασσόμενη σε λογισμικό. Αυτή οδηγεί σε αποδεκτές λύσεις 
βασισμένες σε πειραματικά αποτελέσματα και επί τόπου παρατηρήσεις, με ικανοποιητική 
ακρίβεια και προοπτικές για περαιτέρω έρευνα και εξέλιξη, με σκοπό το δομοστατικό 
σχεδιασμό. 
 


