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1. ABSTRACT  

 
A combination of a ring beam and an intermediate ring stiffener can be used for large silos 
to redistribute the stresses from the local support into uniform stresses in the shell. This 
paper explores the design requirements for intermediate ring stiffeners placed at or below 
the ideal location. Pursuant to this goal, the cylindrical shell below the intermediate ring 
stiffener is analyzed using the membrane theory of shells and the reactions produced by the 
stiffener on the shell are identified. Furthermore, the displacements imposed by the shell 
on the intermediate ring stiffener are obtained. These force and displacement boundary 
conditions are then applied to the intermediate ring stiffener to derive closed form 
expressions for the variation of the stress resultants around the circumference to obtain a 
strength design criterion for the stiffener. These analytical studies are then compared with 
complementary finite element analyses to verify closed-form design equations for ring 
stiffeners.   
 

 
2. INTRODUCTION  
 
Discrete supports in cylindrical metal silos introduce local forces into the shell and produce 
a circumferential non-uniformity in the axial membrane stresses in the silo, which must be 
taken into account in assessing the stability of the shell. A combination of a ring beam and 
an intermediate ring stiffener can be used for large silos to redistribute the stresses from the 
local support into uniform stresses in the shell as shown in Fig. 1. 
Greiner [1] and Öry and Reimerdes [2] showed that an intermediate ring stiffener can be 
very effective in reducing the circumferential non-uniformity of axial stresses in the shell. 



 

Studies conducted by these researchers identified the variation of the axial membrane 
stress distributions up the height of the shell. It was shown that an intermediate ring 
stiffener can achieve a dramatic decrease in the peak axial membrane stress, producing a 
more uniform stress state above the intermediate ring. Recently Topkaya and Rotter [3] 
showed that there is an ideal location for an intermediate ring stiffener, such that the axial 
membrane stress above this ring is circumferentially completely uniform. The ideal 
location is identified by the height HI above the ring beam, defined as the vertical distance 
between the top of the ring beam and the centre of the intermediate ring stiffener as shown 
in Fig. 1. This was determined analytically and is expressed (for the case where 3.0 ) in 
terms of basic geometric variables as follows:    
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where n = number of uniformly spaced column supports; r = middle surface radius; and ν = 
Poisson’s ratio.   
 
 
  
 
 
 
 
 
 
 
 

 
 

Fig. 1: Typical circular planform silo 
In cases where a shell with large radius rests on a few supports, the ideal location can be 
quite high and the option of placing the intermediate ring stiffener below the ideal height 
may provide a viable solution [4]. 
This paper explores the strength requirements for intermediate stiffeners placed at ideal 
location or below this location, where the force transfer and displacement boundary 
conditions differ from those for a ring at the ideal location. A general shell and ring 
combination is studied using the membrane theory of shells to identify the membrane shear 
forces induced in the shell by the ring. These forces are then considered as loads applied to 
the intermediate ring stiffener. Vlasov’s curved beam theory is used to derive closed form 
expressions for the variation of the stress resultants around the circumference to obtain a 
suitable strength design criterion for the stiffener.  
 
3. STRESS AND DISPLACEMENT TRANSFER INTO INTERMEDIATE RING 
STIFFENERS 
 
Topkaya and Rotter [3] determined the ideal location for an intermediate ring stiffener 
using the membrane theory of shells [5-7]. The loading on intermediate ring stiffeners can 
be obtained by solving for the reactions on the shell produced by a stiffener. All 
deformations, loading and stress resultants can be expressed in terms of a harmonic series 
around the circumference [6, 8] in order to solve the governing differential equations. In 
the case of discrete supports, the rapid decay in the effect of higher terms [9] means that 
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the fundamental harmonic term of the column support force is sufficient to study the 
requirements of the ring stiffener, so the support force can be represented by  

cosx xnP P n                                                                                                                      (2) 

where Px = external distributed axial line load applied to the base of the shell; Pxn = Fourier 

coefficient for the nth harmonic of axial line load; and  = circumferential coordinate.    
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Fig. 2: Boundary conditions used in closed form solution, loading, displacements, and 

stress resultants in an element of the cylindrical shell 
The cylindrical shell is here separated into two parts: an upper shell and a lower shell with 
the intermediate ring at their junction, as shown in Fig. 2, which also indicates the chosen 
boundary conditions. The lower shell, of height HL, is subjected to the fundamental 
harmonic of the column support. The upper shell is assumed to be unloaded on its upper 
boundary and restrained against circumferential displacements by a ring. Topkaya and 
Rotter [3] demonstrated that the interface between the lower shell and upper shell will be 
free of both axial stress and axial displacements if an intermediate ring is placed at the 
ideal location. When the intermediate ring is placed below the ideal location some level of 
axial stress non-uniformity is present in the upper shell segment. In addition, the axial 
displacements no longer vanish, so the nonzero axial displacements can also be found at 
this interface.  
Considering the cylindrical shell element shown in Fig. 2, the equilibrium equations are: 
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where Nx, N, Nx = axial, circumferential and shear membrane stress resultants 
respectively; and px, p, pn = external distributed pressures in the axial, circumferential and 
radial directions respectively. 
The strain, displacement and constitutive relationships can be written as: 
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where ux, uθ, ur = displacements in the axial, circumferential and radial directions 
respectively; εx, ε = strains in the axial and circumferential directions respectively; γx = 
shear strain; ν = Poisson’s ratio; E = modulus of elasticity; G = shear modulus; and t = 
thickness of the shell. 
In the lower shell, eq. (3) may be solved sequentially by integrating in the x direction to 
obtain: 
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where f1(θ), f2(θ) = unknown functions of  to be determined from two boundary 
conditions.  
The general solution for the displacements of the shell may then be found as: 
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where f3(θ), f4(θ) = additional functions to satisfy the boundary conditions on the edges x = 
constant. 
Where there is no surface loading on the shell  0x np p p   , eq. (6) give: 

0N      1( )xN f        1 2 1 2
1

( ) ( ) ( ) ( )x
d x d

N f dx f f f
r d r d

   
 

           
         (9) 

At the base, x = 0, the axial membrane stress resultant is chosen as the fundamental 
harmonic of the discrete support, cosx xnN P n   (eq. (2)), leading to: 

2( ) cosxnf P n                                                                                                              (10) 

When the ring is placed at the ideal location, the axial stress vanishes at this height 
( 0xN  ), but when the ring is placed below the ideal location non-uniform axial stresses 

will still be present. As shown in Fig. 2, a certain proportion of the applied axial membrane 
stress resultant is assumed to be present at the interface. The ratio of the axial membrane 
stress resultant at the interface to the applied fundamental harmonic of the column support 
is here termed .  Topkaya and Rotter [3] explored the magnitudes of axial membrane 
stress resultants that remain at this interface using many linear finite element analyses.  
The location of the intermediate ring, shell radius, number of supports and shell thickness 
ratios (g= tU/tL where tU and tL are the thicknesses of the upper and lower shells 
respectively) were considered as the primary variables. Fig. 3 shows the variation of the 
ratio of axial membrane stress resultants for the case of g = 0.5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Variation of axial stress resultant for various intermediate ring heights with upper  

to lower shell thickness ratio g =0.5 
 
The following convenient lower and upper bound expressions can be developed to 
represent the data points:  
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with    ggm  34.25.0  for upper bound       ggm  34.24.0    for lower bound     (12) 

Considering an axial stress resultant cosx xnN P n    at the ring (x = HL) leads to the 

following:  
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Inserting eqs (7) and (9) into eq. (8) yields the circumferential displacement as: 
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At x = 0 and x = HL, the boundary condition of zero circumferential displacements, 0u , 

yields the two results: 
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Inserting eqs (9) and (15) into eq. (7) yields the axial displacements as: 
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When the intermediate ring is placed at the ideal height the axial displacements and axial 
stress resultants at the interface vanish. The condition of  = 0 with 0xu  at 

L Ix H H   leads to the ideal location of the intermediate ring stiffener, previously 

expressed in eq. (1).  
The reactions in the shell at this boundary can be treated as the loading exerted on the 
intermediate ring.  Combining eqs (9) and (13) gives the following expression for the shear 
membrane stress resultant and the displacements at the interface (x = HL) can be found 
from eq. (16) as: 
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4. STRESS AND DISPLACEMENT TRANSFER INTO INTERMEDIATE RING 
STIFFENERS 
 

4.1 Derivation of stress resultants – In plane behaviour  

The six basic equilibrium equations for the curved beam element shown in Fig. 4 can be 
expressed using the Vlasov’s differential equations [10-11] as follows: 
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where r = radius of the ring beam centroid; Mr = bending moment in the ring about a radial 
axis; Mx = bending moment in the ring about a transverse axis; T = torsional moment in 
the ring; qx, q, qr = distributed line loads per unit length in the transverse, circumferential 
and radial directions respectively; mx, m, mr  = distributed applied torques per unit 
circumference about the transverse, circumferential and radial directions respectively; Q = 
circumferential tensile force in the ring; Qx, Qr = shear forces in the ring in transverse and 
radial directions respectively. 



 

The six basic equilibrium equations can be reduced to three differential relationships for 
the case where the only loading is q = Nx (i.e. qr = qx = mr = m = mx = 0) as: 
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Solution of eq. (20) and substituting obtained stress resultants into equilibrium equations 
reveal the following relationships for in-plane loading: 
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These equations give expressions identical to those derived by Zeybek et al. [12] for the 
case where HL = HI and 0.    
 
 
 
 
 
 
 
 

 
 

Fig. 4: Differential curved beam element and sign conventions 
 

4.2 Derivation of stress resultants – Out-of-plane behaviour  
The following expression define the force-deformation relationship [11]:  
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where ux, uθ, ur = displacements in the vertical, circumferential, and radial directions 
respectively;  = rotation; Ir, Ix= bending moment of inertia of the ring stiffener about 
radial and vertical axes respectively; Iw = warping constant of the ring stiffener; KT = 
uniform torsional constant of the ring stiffener; A = cross sectional area of the ring 
stiffener; and G = shear modulus.   
Inserting eq. (17) into eq. (23), substituting into equilibrium equations and considering  = 
0, and substituting obtained stress resultant into equilibrium equations reveal the following 
relationships: 
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Eqs (24), (25) and (26) result in        0 0,  ,0    xr QTM  for the case of HL = HI 

and 0. 
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Considering typical ratios of the strong axis to weak axis elastic section moduli of rolled I 
sections, it is here recommended that the ratio of out-of-plane moment to in-plane moment 
should be limited to 10% (Mr/Mx<0.1). Neglecting the contribution of  (i.e.  = 0), the 
section can be selected by using the following expression for the second moment of area 
about the radial axis (Ir): 
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Having restricted the out-of-plane bending moment using eq. (27), the intermediate ring 
can be designed to resist out-of-plane moments of only 10% of the maximum in-plane 
bending moment.  
 
5. COMPUTATIONAL VERIFICATION OF THE ABOVE EQUATIONS 
 
The commercial finite element program, ANSYS v12.1 [13], was used to perform the 
numerical analysis. The computational time was reduced by modelling only a segment 
covering the angle /n. Four-node shell elements (shell63) were employed to model the 
cylindrical shell. The intermediate ring stiffener was modelled using two-node beam 
elements (beam4). The modulus of elasticity was taken as 200 GPa and Poisson’s ratio as 
0.30. The cylinder base was subjected to loading in harmonic 4 (eq. (2)), corresponding to 
the number of equally spaced discrete supports. The loading at the bottom of the shell was 
chosen to give a maximum axial membrane stress of 100 MPa above the support. The silo 
structure analyzed here had a cylinder radius of 3000 mm and a height of 10000 mm.  The 
lower and upper shell thicknesses were 6 mm and 3 mm respectively. A flexible 
intermediate ring where the out-of-plane second moment of area is defined by the upper 
limit given in eq. (27) was placed at half of the ideal height (HI/2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5: Comparison of closed form solution with numerical solution for a flexible intermediate ring 
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The calculated variations of Mx, Qr, Q, Mr, T and Qx around the circumference, together 
with the predictions of the closed form solutions (eqs (21), (22), (24), (25) and (26)) for the 
intermediate ring are shown in Fig. 5. The lower bound expression (eq. (12)) was used in 
closed form solutions. The comparisons show that the above equations provide acceptably 
accurate solutions, with the largest differences being 4.8%, 5.1%, 4.8%, 18.2%, 20.2% and 
18.4%, for maximum Mx, Qr, Q, Mr, T and Qx respectively 
 
6. SUMMARY AND CONCLUSIONS  
 
This paper has developed a criteria for the strength of intermediate ring stiffeners used in 
cylindrical silo shells resting on column-supported ring beams. The closed form 
expressions reveal that the intermediate ring stiffener is subjected to out-of-plane internal 
forces and bending moments in addition to the in-plane stress resultants when the ring is 
placed below the ideal height. The developed expressions were compared with numerical 
solutions and a good agreement has been demonstrated. The closed form solutions indicate 
that the out-of-plane internal forces and bending moments depend on the out-of-plane 
bending stiffness of the ring. For economical designs, it is proposed that the out-of-plane 
bending moment should be kept below 10% of the in-plane bending moment.  
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