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1. ABSTRACT  
 
In this paper, a force-based 2D frame element formulation with spread of inelasticity 
through the element and localized semi-rigid connections at beam, brace and column base 
regions is presented. Inelasticity along member lengths is captured through fiber 
discretization of monitoring sections; furthermore, defining any type of semi-rigid 
connection along element length does not require introduction of additional nodes and 
degrees of freedom to the system. An accurate shear correction coefficient for wide flange 
sections is also taken into account in order to get closer match of shear effects with respect 
to exact solutions. The proposed element is designated for the performance based analysis 
of steel structures, since considering the presence of semi-rigid connections at beam 
column, column base and brace end regions through analyses will provide more realistic 
representation of the actual behavior of a structure. The proposed model is tested through 
available analysis program for validation purpose of gusset plate flexibility on brace ends 
in frames and the effect of the semi-rigidity on column bases with altering beam to column 
connection flexibility.  
 
Keywords: Semi-rigid connection; Column base connection; Beam to column connection; 
Brace end (gusset plate) connection ; Steel framed structures 
 

 

 

 

 



 

2. INTRODUCTION 
 
Connections in steel structures are defined in two categories to simplify design and 
analysis phases. The behavior of steel connections is considered as either simple (shear) or 
moment type (fixed). Since the expected behavior of a connection should have relative 
rotation together with moment transfer which is called semi-rigid connection, i.e. the real 
response of the connection is actually partially-restrained. In order to present the actual 
modal behavior of steel structures, many researchers tend to include the real behavior of 
connections on the steel structures. Laboratory test on steel connections were conducted by 
Chui and Chan [1] and Nader and Astaneh-Asl [2] and experimental results were 
accompanied with numerical analyses. In order to gain better match, numerical analyses 
considered the real behavior of connections, and much better response was captured. Galvo 
et al. [3], Siva et al. [4], Al-Aasam and Mandal [5] have developed FEM formulations to 
examine the dynamic behavior of steel frames with partially-restrained connections. 
Literature reveals that proper modeling of the behavior of connections have vital role on 
the dynamic behavior of steel framed structures. Structural design codes offer the influence 
of structures under dynamic response. The study by Özel, Saritas and Tasbahji [6] 
presented the necessity of defining connection behavior for accurate modelling of vibration 
characteristics. Column base connections also necessitate similar tendency on connection 
behavior. Studies reveal the column base connections show flexible joint behavior [7-10]. 
Under monotonic loading, Abdollahzadeh and Ghobadi [11], presented the comparison of 
column base with experimental, analytical and FEM model that was proposed by [12]. The 
simplified mathematical formulations for column base plates were studied by 
Stamatapoulos and Ermopoulos [12] to present the flexible joint behavior of column bases 
under cyclic loading. Another element of the steel framed structures is the brace elements. 
To complete a system, it is necessary to mention these members. The importance of 
behavior of brace end connections for steel framed structures is presented in [13, 14]. Most 
of the cases for the gusset plates are the axial load deformation relation [15-17] and the 
flexibility of axial direction should be considered.  
In order to accomplish an accurate dynamic analysis of steel framed structures, vibration 
characteristics of typical steel beams, braces and columns with partially restrained 
connections or also called as in most cases as semi-rigid connections should be studied. 
For an accurate representation of the semi-rigidity, behavior of the members should be 
validated. In this work, a mixed formulation frame finite element is implemented with the 
use of three fields Hu-Washizu-Barr functional. Moreover, an accurate shear area 
correction of the members is also necessary to validate the actual frame behavior of the 
steel members. A shear correction factor for I-shaped beams presented by Charney et al. 
[18] is adopted. The determination of vibration frequencies of members is verified with 
proposed model that have ability to present altering geometry and material distribution 
with semi-rigid connections at any section on the element without further specification of 
different displacement shape functions. SAP2000 [19] is used to validate the results of the 
proposed model. 
 

 
3. FRAME ELEMENT FORMULATION 
 
3.1 Kinematic Relations 
Normal and shear strains for a beam section deforming in xy-plane can be written as 
follows:  
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where ( )xe  is the section deformation vector given as follows; 
T
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where a(x) is the axial strain of the reference beam axis, (x) is the shear deformation of 
the section along y-axis and  is the curvature of the section about z-axis. Finally, section 
compatibility matrix as in Equation (1) is written as follows; 
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3.2  Basic System without Rigid Body Modes and Force Interpolation Functions 
 
The cantilever basic system shown in Figure 1 is used for removing the rigid body modes 
in the element response. This basic system provides easier derivation of the mass matrix of 
the beam than the use of simply supported basic system.  

 
 

Figure 1. Cantilever basic system forces and deformations 
 
Element formulation is given in xy-plane, where the formulation presents two end nodes 
and is based on a transformation from complete system to basic system. In the structure of 
the formulation, the element has 3 degrees of freedom (dof) per node, resulting in 6 dofs, 
where the nodes are placed at element ends. The complete system is offered such that the 
axis of the element is aligned with horizontal x-axis. The transformation matrix, a for an 
element with length L is used to relate element end forces and deformations in complete 
system to basic element forces as follows; 
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Basic element forces at free end, q are shown in Figure 1 and given in Equation (4). These 
forces can be related to internal section forces, ( )xs  by using the force interpolation matrix 

( , )x Lb  for the cantilever beam configuration as follows;  
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3.3 Variational Base and Finite Element Formulation of the Element 
Variational form of the element is written by independent element nodal displacements u, 
element basic forces q, and section deformations e by using three-fields Hu-Washizu 
functional and implemented as part of beam finite elements by [20] and [21]. Extension to 



 

dynamic case is achieved through introduction of inertial forces mu  to get the following 
variational form of the element 
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To satisfy Equation (6) for arbitrary u , q  and e , we get  

T
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Equation (7) is the equation of motion that stands for linear or nonlinear material response, 
and this equation can be taken for each element to get structure’s equation of motion. A 
numerical time integration scheme can be used to get a solution.  
For linear elastic material response, section deformations can be calculated as e=ks

-1ŝ to 
obtain the section deformations from section forces through the use of section stiffness 
matrix ks. The change of section deformations e to Equation (8) gives: 
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In above equation f is the flexibility matrix of the element in the basic system. fs is the 
section flexibility matrix that can be calculated from the inversion of the section stiffness 
matrix ks. Further substitution of above equation for linear elastic response in Equation (7) 
results in 
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where k is the 6×6 element stiffness matrix in the complete system. Mass matrix of the 
force-based element is written in a 6×6 dimension by the method provided by [22], and the 
details can be seen in [6, 23]. With this approach, the need to derive displacement shape 
functions along element length is circumvented.  
The presence of semi-rigid connections is now introduced through the following extended 
version of above equation for the calculation of element end deformations: 
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The first integral along the length of the frame element can be numerically calculated by 
using a quadrature rule to capture spread of inelastic behavior and nSC is the total number 
of semi-rigid connections discreetly located along element length; SC is the vector of 
semi-rigid connection deformations. Introduction of semi-rigid connections along element 
length in Figure 1 does not alter the force field under small deformations. Element 
flexibility matrix is similarly discretized as follows:  
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3.4 Section Response 
Section response can be got by the basic assumption that plane sections before deformation 
remain plane after deformation along the length of the beam by the use of following 
section compatibility matrix as given in Equation (1), where the section compatibility 
matrix now contains the shear correction factor s as follows 
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Shear correction factor s is taken as the inverse of the form factor suggested by Charney 
et al. [18] for I-section: 
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The section forces are obtained by integration of the stresses that fulfill the material 
constitutive relations ( )σ σ ε  according to  
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The derivative of section forces from (16) with respect to the section deformations results 
in the section tangent stiffness matrix 
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The material tangent modulus km is obtained from the stress-strain relation according to 
km=∂σ(ε)/∂ε. Above integrals are numerically calculated, where this approach is named as 
fiber model. 
 
 
4. NUMERICAL EXAMPLES 

 
For the simulation of the importance of beam-column and column baseplate connection 
behavior, a 3 bay and 6 stories steel frame shown in Figure 2 is considered. The length of 
the beams is 6.0 m and the height of the columns is 3.75 m.  The columns and beams of the 
structure consist of HEB260 and IPE300, respectively. Semi-rigid connections are present 
at both ends of each beam, and as well as column bases. In study [6], the results from 
proposed model were compared with both SAP2000 analyses and the results given in the 
study of Al-Aasam and Mandal [5], which is derived for the estimation of the vibrations in 
semi-rigid steel structures with fixed bases. The study of Özel, Saritas and Tasbahji [6] 
revealed that flexible joint presents good match with the study presented in [5].  
 
The effect of the column baseplate is introduced in this work and the vibration 
characteristic of the resulting variation of fundamental vibration frequency is plotted in 
Figure 3. The effect of the semi-rigid connection at both beam-column joints and column 
baseplate revealed the drastic change on the dynamic behavior of the steel structure. The 
blue region on the 3D graph represents the both beam-column and column baseplate 
connections are closer to pinned case and red region represents connection behaviors that 
are closer to fixed case. In between these results the change in fundamental natural 
frequency of the 3 bay 6 story frame with flexible joints is significant. 
 
 



 

 
 

Figure 2. Fundamental Natural Frequency vs. Joint Stiffness Ratio  
for 3 Bays 6 Stories Steel Framed Structure [6] 

 
 

 
 

Figure 3. Fundamental Natural Frequency vs. Joint Stiffness Ratio of Beam-column and 
Column Baseplate Interaction for 3 Bays 6 Stories Steel Framed Structure 

 
In order to study the significance of gusset plate axial flexibility on the vibration 
characteristic of a structure, the portal frame with brace shown in Figure 4 is considered. 
This example is also used for the purpose of verification of proposed element’s capability 
to introduce axial stiffness in an inclined element’s response, i.e. to the brace member, 
without the need to introduce new nodes and degrees of freedom to the structural model. 
The portal frame has 3 m height and 2.9 m span with UC203X203X60 columns, 
UB254X146X37 beam and RHS70*5 brace. The portal frame is adopted from [5] and 
brace member is added to observe the effects of flexibility of gusset plates.  At the ends of 
the brace, gusset plates are considered and the flexibility of these gusset plates are denoted 
with a ratio,  that is obtained by axial rigidity of the brace member divided by the length, 
EA/L. The range of the  value is plotted in Figure 4 with corresponding normalized 
fundamental natural frequency of the braced portal frame. Same example is analyzed with 
SAP2000 and as seen on the Figure 4, very good match between proposed model and 
SAP2000 model is obtained.  



 

 
 
Figure 4. Normalized Natural Frequency vs. Joint Stiffness Ratio for Braced Portal Frame 

 
 
3. CONCLUSIONS  
 
The proposed frame element model can intake any type of localized connection response in 
a steel framed structure. In this study, the dynamic behavior of beam-column, brace ends 
and column baseplate connections on steel structures are evaluated with the proposed 
model. Hence, modal properties for portal braced frame which is made up with rectangular 
hollow sections and I-sections are accurately captured through comparison with SAP2000 
results. Also, the interaction of the flexibility on column bases and beam ends are 
presented and the change in the dynamic behavior of the 3 bay 6 story frame is observed. 
The effect of the semi-rigidity on column bases and beam-column connections showed a 
drastic change on the dynamic behavior of steel structures.  Proposed model provides 
accurate and vigorous solutions for the vibration and dynamic analysis of semi-rigid steel 
structures by the use of single element discretization per member. This study presented the 
necessity of the flexible joint definitions at beam, brace and column connections. 
 

 

4. REFERENCES  
 

[1] CHUI, P.P.T. and CHAN, S.L., "Vibration and deflection characteristics of semi-
rigid jointed frames.", Engineering Structures, Vol.19, No.12, 1997, pp. 1001-1010. 

[2] NADER, M.N. and ASTANEH-ASL, A., "Shaking table tests of rigid, semirigid, and 
flexible steel frames.", Journal of Structural Engineering, Vol. 122, 1996, pp. 589-
596. 

[3] GALVAO, A.S., et al., "Nonlinear dynamic behavior and instability of slender 
frames with semi-rigid connections.", International Journal of Mechanical Sciences, 
Vol. 52, 2010, pp. 1547-1562. 

[4] Da SILVA, J.G.S., et al., "Nonlinear dynamic analysis of steel portal frames with 
semi-rigid connections.", Engineering Structures, Vol. 30, 2008, pp. 2566-2579. 



 

[5] AL-AASAM, H.S. and MANDAL, P., "Simplified procedure to calculate by hand 
the natural periods of semirigid steel frames.", Journal of Structural Engineering, 
Vol.139, 2013, pp. 1082-1087. 

[6] OZEL, H.F., SARITAS, A. and TASBAHJI, T.,  Consistent matrices for steel framed 
structures with semi-rigid connections accounting for shear deformation and rotary 
inertia effects. Engineering Structures, 2017. 137: p. 194-203. 

[7] DEWOLF, J.T. and SARISLEY, E.F., "Column Base Plates with Axial Loads and 
Moments.", Journal of the Structural Division, ASCE, Vol. 106, 1980, pp. 2167-3184. 

[8] PICARD, A. and BEAULIEU, D., "Behaviour of a simple column base connection." 
Canadian Journal of Civil Engineering, Vol. 12, 1984, pp. 126-136. 

[9] THAMBIRATNAM, D.P. and PARAMASIVAM, P., "Base Plates Under Axial Loads and 
Moments.", Journal of Structural Engineering, ASCE, Vol. 112, No. 5, 1986, pp. 1166-
1181. 

[10] ASTANEH, A., BERGSMA, G. and S. J.H., "Behavior and Design of Base Plates for 
Gravity, Wind and Seismic Loads", in Proceedings of the National Steel Construction 
Conference, 1992, Las Vegas. 

[11] ABDOLLAHZADEH, G.R. and GHOBADI, F., "Mathematical Modeling of 
Column-Base Connections under Monotonic Loading.", Civil Engineering 
Infrastructures Journal, Vol. 47, No. 2, 2014, pp. 255-272. 

[12] STAMATOPOULOS, G.N. and ERMOPOULOS, J.C., "Experimental and analytical 
investigation of steel column bases.", Journal of Constructional Steel Research, Vol. 
67, 2011, pp. 1341-1357. 

[13] LEHMAN, D.E., et al., "Improved Seismic Performance of Gusset Plate 
Connections.", Journal of Structural Engineering, Vol. 134, 2008, pp. 806-901. 

[14] ROEDER, C.W., et al., "Influence of gusset plate connections and braces on the 
seismic performance of X-braced frames.", Earthquake Engineering and Structural 
Dynamics, Vol. 40, 2011, pp. 355-374. 

[15] BJORHOVDE, R. and CHAKRABARTI, S.K., "Tests of full size gusset plate 
connections.", Journal of Structural Engineering, Vol. 111, No. 3, 1985, pp. 667-
684. 

[16] WALBRIDGE, S.S., GRONDIN, G.Y. and CHENG, J.J.R., "Gusset plate 
connections under monotonic and cyclic loading.", Canadian Journal of Civil 
Engineering, Vol. 32, 2005, pp. 981-995. 

[17] CHEN, S.J. and CHANG, C.C., "Experimental study of low yield point steel gusset 
plate connections.", Thin-Walled Structures, Vol. 57, 2012. pp. 62-69. 

[18] CHARNEY, F.A., IYER, H. and SPEARS, P.W., "Computation of major axis shear 
deformations in wide flange steel girders and columns.", Journal of Constructional 
Steel Research, Vol. 61, 2005, pp. 1525–1558. 

[19] SAP2000, in Structural Analysis Program SAP 2000, 2011, CSI Berkeley: CA. 
[20] TAYLOR, R.L., et al., "Mixed finite element method for beam and frame 

problems.", Computational Mechanics, Vol. 31, No. 1-2, 2003, pp. 192-203. 
[21] SARITAS, A. and FILIPPOU, F.C., "Inelastic axial-flexure–shear coupling in a 

mixed formulation beam finite element.", International Journal of Non-Linear 
Mechanics, Vol. 44, No. 8, 2009, pp. 913-922. 

[22] MOLINS, C., ROCA, P. and BARBAT, A.H., "Flexibility-based linear dynamic 
analysis of complex structures with curved-3D members.", Earthquake Engineering 
& Structural Dynamics, Vol. 27, No. 7, 1998., pp. 731-747. 

[23] SOYDAS, O. and SARITAS, A. "Free vibration characteristics of a 3d mixed 
formulation beam element with force-based consistent mass matrix.", Journal of 
Vibration and Control, 2016. In Press. 


